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We analyze theoretically and experimentally the far-field viscous decay of a two-
dimensional inertial wave beam emitted by a harmonic line source in a rotating
fluid. By identifying the relevant conserved quantities along the wave beam, we
show how the beam structure and decay exponent are governed by the multipole
order of the source. Two wavemakers are considered experimentally, a pulsating
and an oscillating cylinder, aiming to produce a monopole and a dipole source,
respectively. The relevant conserved quantity which discriminates between these two
sources is the instantaneous flow rate along the wave beam, which is non-zero for
the monopole and zero for the dipole. For each source, the beam structure and decay
exponent, measured using particle image velocimetry, are in good agreement with the
predictions. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922735]

I. INTRODUCTION

In rotating fluids, the restoring action of the Coriolis force allows for the propagation of aniso-
tropic, transverse, circularly polarized waves called inertial waves.1 These waves are of fundamental
interest for geo- and astrophysical flows:2–4 they can, for instance, be excited in the fluid core of
planets by tidal motions, precession, or libration.5–7 Internal gravity waves in stratified fluids, rele-
vant to the ocean and the atmosphere, share a number of properties with inertial waves.8,9 Internal
waves, or mixed internal–inertial waves when rotation and stratification effects are of comparable
magnitude,10,11 can also be excited in the ocean by the interaction of tides with topography.12–15

We focus in this paper on the scaling of the viscous decay of a wave beam emitted by a
line source in a uniformly rotating fluid. Although this problem has received much attention, the
influence of the multipole order of the source has not been addressed so far. Interestingly, whereas
the growth of the wave beam thickness,16 δ(x) ∼ x1/3 (with x the distance from the source), is
independent of the multipole order of the source, the decay of the wave amplitude depends on which
quantity is conserved along the wave beam (flow rate, momentum, or higher order moment), which
is directly governed by the multipole order of the source. Such dependence was discussed in the
case of internal waves produced by a point source in stratified fluids by Voisin.17 Here, we address
this problem for a two-dimensional inertial wave beam produced by a line source, extending the
simple far-field quasi-parallel approach of Cortet et al.18 to a source of arbitrary multipole order. We
show that the wave decay is steeper as the multipole order of the source increases, which implies
that the far-field decay of a wave beam emitted by an arbitrary source is dominated by its lowest
multipole component.

Inertial wave beams emitted from localized sources are relevant to a broad range of laboratory
and natural flows, including not only local forcing by a wavemaker immersed in the fluid but also
global forcing acting at the scale of the fluid domain, such as precession, libration, or tidal motion.
This is because in all cases wave beams are emitted from critical lines, where the local slope of the
solid boundaries equals the propagation angle of the wave. Along such critical lines, the oscillating
boundary layer erupts and forms oscillating beams in the bulk of the flow.1,5,7,19–21 In confined fluid
domains, such beams reflect and, in the presence of sloping boundaries, may focus on wave attrac-
tors.7,22–24 The eruption at critical lines produces two types of wave beams, associated with different
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magnitudes and scaling laws, propagating in planes tangent and non-tangent to the solid boundary.5

Wave emission in the tangent plane, developing only along convex boundaries, is stronger: this is
the case for conical inertial wave beams emitted from the inner core of a rotating spherical shell5,19

or for internal wave beams excited by oceanic internal tides on the edge of continental shelves or
ridges.12–14,25 Wave emission in the non-tangential plane, both at critical lines of convex or concave
slope (for instance, on the outer sphere of a rotating spherical shell5,7,19 or at the sloping bottom of a
ridge15), is of weaker amplitude. Emission of inertial wave beams is also observed from horizontal
edges in containers such as a cylinder26,27 or a parallelepiped.28

A key property of an inertial wave beam spawned from an erupting boundary layer is its
non-zero instantaneous flow rate: it can be modeled in the far field as originating from a monopole
line source. Depending on the topology of the fluid domain, in particular on the distribution and
relative phases between such elementary monopole sources, different wave beams propagating in
the same direction may combine and form far-field beams of either non-zero or zero instantaneous
flow rate, therefore corresponding to an effective monopole or a higher order multipole source. Note
that such combination of beams requires propagation over a distance much larger than the sepa-
ration between the sources, a requirement which is usually not satisfied in geo- and astrophysical
situations.

We restrict in the following to wave beams produced by effective line sources surrounded by
the fluid. In practical situations, such line source corresponds to a two-dimensional convex distur-
bance, say a cylinder, defining four critical lines (Fig. 1). If the cylinder is pulsating (Fig. 1(a)),
the periodic emission and suction of mass from these critical lines are in phase, so the far-field
merged beams have non-zero flow rate: this defines an effective monopole source. On the other
hand, if the cylinder is oscillating (Fig. 1(b)), the parent beams propagating in the same direction are
out of phase, resulting in far-field merged beams of zero flow rate: this defines an effective dipole
source. The pulsating and oscillating cylinders are therefore generic configurations to investigate the
influence of the multipole order of a line source on the properties of the far-field wave beams.

Most of the experiments investigating wave beams emitted by a local disturbance, both in
stratified25,29–33 and rotating18,34 fluids, are based on oscillating wavemakers (with the exception of
Makarov et al.35 who report results from a pulsating cylinder in a stratified fluid). The resulting
far-field wave beams are therefore distinct from those produced from an erupting boundary layer in
a globally forced fluid domain. The aim of the present paper is to compare the far-field properties of
inertial wave beams emitted from a pulsating and an oscillating cylinder in a rotating tank, aiming
to produce a monopole and a dipole source. Velocity measurements in the wave beam are achieved
using two-camera multi-resolution particle image velocimetry (PIV), ensuring a good resolution

FIG. 1. Sketch of the far-field wave beams resulting from a combination of parent beams emitted from the critical lines, for
(a) a pulsating cylinder and (b) an oscillating cylinder. The size of the disturbance is assumed much larger than the thickness
of the Ekman boundary layer. The dashed circles represent the separation between bimodal and unimodal regions. Eight wave
beams are emitted from four critical lines (red points), which behave as local sources of non-zero instantaneous flow rate. Far
from the cylinder, two parent beams propagating in the same direction combine and form a unique beam. The instantaneous
flow rate of the resulting merged beam is non-zero when the two parent beams are in phase (case (a)), and is zero when they
are out of phase (case (b)).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  129.175.97.14 On: Fri, 19 Jun 2015 13:25:42



066602-3 Machicoane et al. Phys. Fluids 27, 066602 (2015)

both in the near and far fields. The two sources produce distinct decay exponents and wave beam
profiles, in good agreement with the theoretical predictions.

II. THEORETICAL BACKGROUND

A. Dispersion relation and viscous spreading

The geometrical properties of inertial waves follow from their dispersion relation,1

σ = ±2Ω · k
|k| = 2Ω cos θ, (1)

with σ > 0 the wave frequency and θ the polar angle between the wave vector k and the vertical
rotation vector Ω. Waves emitted from a localized harmonic disturbance propagate energy in direc-
tions making an angle ±θ to the horizontal, along two cones for a point source and along four plane
beams for a line source normal to Ω. We restrict in the following to the line source configuration,
for which the spatial decay of the wave is purely governed by viscosity. In each wave beam, fluid
particles describe anticyclonic circular translations in the tilted plane normal to k. Since only the
orientation of k is prescribed by the dispersion relation (1) but not its magnitude, the characteristic
sizes of the wave (wavelength and beam thickness) are governed by the boundary conditions and
viscosity.

The viscous spreading of the wave beam results from the combination of the energy propaga-
tion in the longitudinal direction x and its diffusion in the lateral direction z (see Fig. 2). Its scaling
can be obtained from a classical boundary-layer argument: During a time t, the wave energy spreads
laterally over a distance δ ≃

√
νt, with ν is the kinematic viscosity, and propagates over a distance

x = cgt, where cg is the group velocity. Evaluating cg = (σ/k) tan θ for the dominant wave number
at a distance x from the source, k ∼ δ−1, simply yields

δ(x) ∼ ℓ2/3x1/3, (2)

where we introduce the viscous scale

ℓ = (ν/σ tan θ)1/2. (3)

Although the scaling of the wave amplitude strongly depends on the multipole order of the source,
the scaling of beam thickness (2) is independent of the nature of the source, provided that δ(x) is
much larger than the size of the source.

B. Boundary layer equations

We derive now the similarity solutions for a viscous 2D inertial wave beam emitted by a
harmonic line source, focusing on the spatial decay of the wave amplitude and its dependence on the
multipole order of the source. The derivation follows that of Thomas and Stevenson30 for internal
waves in stratified fluids. We use the velocity–vorticity formulation of Cortet et al.,18 generalized
here to a source of arbitrary order.

We consider a line source along the Y axis, of angular frequency σ, in a fluid rotating at rate Ω
about the Z axis (Fig. 2). Since the four wave beams emitted by the source are invariant along Y, en-
ergy propagates in the (X, Z) plane. In the following, we consider only the wave beam propagating
in one given quadrant. We start from the linearized vorticity equation in the rotating frame

∂tω = (2Ω · ∇)u + ν∇2ω, (4)

with u the velocity and ω = ∇ × u the vorticity. We project (4) on the local frame of the far-field
wave beam (ex,ey,ez), with ex aligned with the group velocity, making angle θ = cos−1(σ/2Ω) with
the horizontal, and assume that the flow inside the wave beam is quasi-parallel (boundary layer
approximation), i.e., such that |ux |, |uy | ≫ |uz |; |ωx |, |ωy | ≫ |ωz |; and ∇2 ≃ ∂2

z . We introduce the
complex velocity and vorticity fields in the tilted plane (x, y), U = ux + iuy and W = ωx + iωy ≃
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FIG. 2. Two-dimensional wave beam emitted from a line source at X = Z = 0 in a fluid rotating about the Z axis. Only
the beam propagating in the first quadrant (X > 0, Z > 0) is shown. The contour C shows the frontiers of the domain of
integration D used in Sec. II C.

i∂zU. Searching for harmonic solutions of the form U = U0e−iσt, Eq. (4) becomes

∂xU0 + iℓ2∂3
zU0 = 0. (5)

This equation admits similarity solutions as a function of the reduced transverse coordinate η =
z/(x1/3ℓ2/3) of the form

U0(x, z) = Ũ0

(
ℓ

x

)a
f (η), (6)

where Ũ0 is a complex velocity scale and a > 0 the decay exponent to be determined. The solution
considered in Cortet et al.18 was derived for the particular case a = 1/3.36 Inserting Eq. (6) in Eq. (5)
yields

3 f ′′′ + iη f ′ + 3ia f = 0. (7)

Solutions of this equation, first given by Moore and Saffman37 for the problem of a vertical steady
shear layer (θ = π/2) and later by Thomas and Stevenson30 in the context of internal waves, are

fm(η) = cm(η) + ism(η) =
 ∞

0
Kme−K

3
eiKηdK, (8)

with cm and sm real functions, even and odd, respectively. The properties of these functions were
considered in detail by Voisin.17 Integrating Eq. (8) by parts gives 3 fm+3 − iη fm+1 − (m + 1) fm = 0
for m > −1, which (using f ′m = i fm+1) yields

3 f ′′′m + iη f ′m + i(m + 1) fm = 0. (9)

Comparing with Eq. (7) allows us to relate the decay exponent a of the velocity amplitude to the
order m of the Moore-Saffman function,

a =
m + 1

3
. (10)

Any localized wave motion can be represented as a sum of Moore–Saffman functions of different
orders m, each leading to a wave component characterized by a specific decay exponent (10). This
decay exponent agrees with the derivation of Peat10 for m = 1 and with the case m = 0 discussed
by Rieutord et al.7 in the problem of detached layers from critical latitudes in a rotating spherical
shell. Equation (10) is also consistent with the derivation of Voisin17 for internal waves in a stratified
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fluid (the derivation given in this reference is for the conical wavepacket emitted by a point source,
yielding a modified decay exponent aaxi = a + 2/3).

For a wave beam of order m, we can write explicitly the velocity component along the wave
beam ux = ℜ(U) as

u(m)
x (x, η, t) = |Ũ0|

(
ℓ

x

) (m+1)/3

(cm(η) cos(σt + α) + sm(η) sin(σt + α)), (11)

and the vorticity component ωy = ℑ(W ) as

ω
(m)
y (x, η, t) = |Ũ0|

ℓ

(
ℓ

x

) (m+2)/3

(−sm+1(η) cos(σt + α) + cm+1(η) sin(σt + α)), (12)

where Ũ0 = |Ũ0|e−iα. The argument α accounts for a possible phase shift, through added mass
effects, between the wave beam oscillation and the source oscillation. These quantities (11) and
(12) are of interest for the experimental measurements based on two-component particle imaging
velocimetry in the (X, Z) plane described in Sec. III.

C. Conservation laws

We demonstrate now that the order m of the Moore–Saffman function describing a wave beam
in the far field coincides with the multipole order n of the source from which it is emitted. We
define in the following a source of order n such that the moments of order s of the rate of expansion
µ(X, Z, t) = ∇ · u are zero for s < n and finite for s = n. We note first that the moment of order s of
the Moore-Saffman function fm(η) (8) satisfies the property

 ∞

−∞
ηs fm(η) dη =




0 (s < m),
isπs! (s = m),
∞ (s > m),

(13)

so that only the mth moment of the velocity profile of order m (11) is finite and non-zero. What is
needed in addition is to find a conserved quantity involving that moment and to identify m to the
multipole order of the source from which the wave beam is emitted.

Consider first a line monopole (n = 0) along the Y -axis, releasing fluid at the flow rate q(t) per
unit length. The corresponding rate of expansion µ(X, Z, t) has q(t) as its zeroth moment,

q(t) =


µ(X, Z, t) dXdZ, (14)

and is of the form

µ(X, Z, t) = q(t)δ(X)δ(Z), (15)

with δ the Dirac delta function. For a domain D of boundary C in the (X, Z)-plane, we have, by the
divergence theorem, 

C

u · n dl =

D

µ dXdZ, (16)

where n is the outward normal and dl a positively oriented contour element. We specialize to the
first quadrant and consider the domain represented in Fig. 2; its boundary starts from the origin
along a segment CX of the X-axis, continues with a segment Cz perpendicular to the wave beam at
a large distance x, and goes back to the origin along a segment CZ of the Z-axis. The contributions
of CX and CZ to the contour integral vanish, since the velocity is negligible outside the beam. The
surface integral is one fourth of the integral over the whole plane, owing to the parity of the delta
function. We eventually obtain  ∞

−∞
ux dz = 1

4 q(t), (17)
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a conservation equation of the type used by Moore and Saffman37 and Rieutord et al.,7 involving the
zeroth moment of the longitudinal velocity.

Consider next a line dipole (n = 1), defined such that the flow rate (zeroth moment of the rate of
expansion µ) is zero, but the first moment

p(t) =


x µ(X, Z, t) dXdZ (18)

is finite: it is related to the momentum per unit length imparted to the fluid. The rate of expansion µ
is therefore written as

µ(X, Z, t) = −p(t) · ∇(δ(X)δ(Z)), (19)

as discussed, for example, by Pierce.38 We write, with xi an arbitrary coordinate in the plane (X, Z)
and ui the associated velocity component,

∇ · (xiu) = xi(∇ · u) + ui. (20)

Integration over an arbitrary domain D yields
C

xiu · n dl =

D

xiµ dXdZ +

D

ui dXdZ, (21)

which becomes, after application to the domain D of Fig. 2, ∞

−∞
xiux dz = 1

4 pi +
 ∞

0

 ∞

0
ui dXdZ. (22)

We finally choose xi = z, the cross-beam coordinate, such that ui = uz is negligible everywhere in
the quadrant. The last integral vanishes in Eq. (22) and we obtain ∞

−∞
zux dz = 1

4 pz(t), (23)

a conservation equation involving the first moment of the longitudinal velocity. This equation is
equivalent to those used by Thomas and Stevenson30 and Peat,10 involving the zeroth moments of
the pressure and stream function, respectively. We conclude that the velocity profile in a wave beam
emitted by a line dipole (n = 1) has a vanishing moment of order s = 0 (17) and a finite moment of
order s = 1 (23).

The previous argument can be generalized to a line source of arbitrary multipole order: the
wave beam emitted from a source of order n is such that the sth moment of the longitudinal velocity
is zero for s < n and finite for s = n. This finite moment is written as (see Appendix) ∞

−∞
znux dz = 1

4 qz · · ·z(t), (24)

with qz · · ·z the nth moment of the rate of expansion µ(X, Z, t) along the z axis. Switching to complex
notation, u(m)

x = ℜ(U0e−iσt) and qz · · ·z = ℜ(Qz · · ·ze−iσt), and using Eq. (6) yield

Ũ0ℓ
1+n

(
ℓ

x

) (m−n)/3  ∞

−∞
ηn fm(η) dη = 1

4 Qz · · ·z. (25)

Using property (13) of fm(η) yields immediately m = n and

Ũ0 =
(−i)n

n!
Qz · · ·z

4πℓn+1 , (26)

confirming that the order m of the Moore–Saffman wave beam is equal to the multipole order n of
the source from which it is emitted.

We can conclude that a beam emitted by a monopole source is essentially an oscillating jet of
non-zero instantaneous flow rate. On the other hand, a wave beam emitted by a multipolar source of
order m > 0 contains a set of oscillating shear layers with zero instantaneous flow rate, the number
of layers in the beam increasing as m1/3 for large m. The stronger shear stress induced by the larger
number of layers naturally results in a steeper decay of the wave amplitude.
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For a source of arbitrary shape, characterized by an arbitrary multipole expansion, the viscous
decay of the wave beams in the far-field is dominated by the smallest decay exponent a, i.e., by the
term of lowest order in the expansion. In practice, we can focus on the first two orders: monopole
(m = 0) for any source of finite flow rate, for which ux ∼ x−1/3 and ωy ∼ x−2/3, and dipole (m = 1)
for a source of zero flow rate, for which ux ∼ x−2/3 and ωy ∼ x−1.

III. EXPERIMENTAL SETUP AND DATA ANALYSIS

We have set up an experiment to characterize the influence of the multipole order of the source
on the structure and decay of the inertial wave beam. Measurements are performed in a tank of
horizontal size LX × LY = 150 × 80 cm2, filled with 50 cm of water, and mounted on a 2 m diam-
eter platform rotating around the vertical axis Z . Two wavemakers are considered, referred to as
pulsating source and oscillating source [see Figs. 3(a) and 3(b)]. These wavemakers aim to produce
effective monopole and dipole sources (properties summarized in Table I).

• The pulsating source consists in a water-filled horizontal rubber tube, 60 cm long, whose
volume varies as sin(σt). The instantaneous radius varies approximately as R(t) ≃ R0
+ A sin(σt), with mean radius R0 = 8.9 mm and amplitude A = 0.7 mm (the oscillation is
harmonic to within A/R0 ≃ 8%). This source imposes an oscillating flow rate per unit length
q(t) ≃ 2πR0Aσ cos(σt).

• The oscillating source consists in a horizontal cylinder, 60 cm long, R0 = 3.0 mm in radius,
whose vertical position Z(t) = Z0 + A sin(σt) oscillates at frequency σ and amplitude A =
3.2 mm (Fig. 3(b)). This cylinder is a source of zero net flow rate which can be modeled, at
large distances, as an oscillating dipole characterized by a dipole moment p(t) = ℜ(Pe−iσt),
with P = [1 + C(σ)]πR2

0 AσeZ and C(σ) an added mass coefficient. Without background rota-
tion, this coefficient is a real constant C = 1. With rotation, the coefficient becomes com-
plex and frequency-dependent owing to wave generation. The experimental measurement and
theoretical determination of added mass coefficients have been considered by Ermanyuk and
Gavrilov39 and Ermanyuk,40 among others, for internal waves.

The wavemaker (either pulsating or oscillating) is immersed horizontally 10 cm below the
surface. It is located along the Y axis, at a distance ∆X = 30 cm from the sidewall of the tank.
The wavemaker frequency is kept constant, σ = 1.18 rad s−1, so that the wavemaker velocity Aσ is
constant. The rotation rate of the platform Ω is varied in the range 0.68–1.68 rad s−1 (6.5–16 rpm),
resulting in a beam angle θ = cos−1(σ/2Ω) varying in the range 30◦–70◦.

FIG. 3. Schematic cross section of the pulsating (a) and oscillating (b) sources (the two extreme states of the oscillation are
shown). (c) Vorticity component ωy showing the wave beam emitted by the oscillating source, measured by the two cameras
with different resolutions (Ω= 0.68 rad s−1 and propagation angle θ = cos−1(σ/2Ω)≃ 30◦). Different color scales are used
for the two fields for better visibility.
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TABLE I. Properties of the pulsating and oscillating sources: mean radius R0, oscillation amplitude A, velocity amplitude
Aσ, Reynolds number Re= 2R0Aσ/ν (with ν = 10−6 m2 s−1 the kinematic viscosity of water). The vorticity decay exponents
correspond to the average (± standard deviation) over the four experiments at different σ/2Ω [see Fig. 4(b)].

Vorticity decay exponent

Source
R0

(mm)
A

(mm)
Aσ

(mm s−1) Re Theory Experiment

Pulsating (m = 0) 8.9 0.7 0.82 15 −2/3 −0.64 ± 0.09
Oscillating (m = 1) 3.0 3.2 3.77 23 −1 −0.99 ± 0.05

The Reynolds number of the flow in the vicinity of the wavemaker, defined as Re = 2R0Aσ/ν,
is Re = 15 for the pulsating source and Re = 23 for the oscillating source. Despite the relatively
large amplitude ratio (up to A/R0 = 1.06 for the oscillating cylinder), these moderate Reynolds
numbers indicate that nonlinearities (saturation and generation of higher harmonics) can be ne-
glected; see in particular the discussion by Voisin et al.33 for internal waves, pointing the importance
of (A/R0)Re for saturation. The viscous scale ℓ (3) varies in the range 0.6–1.2 mm. For the pulsating
cylinder, the ratio R0/ℓ ≃ 7–14 indicates that the far-field properties of the wave beams are expected
at a significant distance x/ℓ (the radius of the oscillating cylinder can be made arbitrarily small, but
the radius of the pulsating cylinder is limited by the design of the rubber tube).

The two components of the velocity fields (uX,uZ) are measured in the vertical plane Y = LY/2
normal to the source axis using a PIV system mounted in the rotating frame. Among the four wave
beams emitted by the sources, we focus on the one propagating over the longest distance, in the
bottom-left direction [see Fig. 3(c)]. Images of particles are acquired with two 2360 × 1776 pixels
cameras operating simultaneously with different fields of view. Each PIV acquisition consists in
3000 image pairs (one image per camera) recorded at 3 Hz, which represents 16 fields per source
period. Cross-correlation between successive images produces velocity fields sampled on a grid of
295 × 222 vectors, with a spatial resolution of 0.58 mm for the closer view and 2.04 mm for the
larger view. The combination of the PIV data from the two cameras allows us to resolve accurately
the spatial scales of the wave field for distances from the source x between 10 mm and 1 m.

Two post-processing steps are applied to the PIV fields. First, the velocity time series are
phase-averaged at the forcing frequency σ in order to filter out contributions from unwanted resid-
ual flows. These residual flows originate from thermal convection effects (velocities of the order of
1 mm s−1), at very small frequencies, and motions due to the precession of the rotating platform
induced by the Earth rotation41 (≃ 0.5 mm s−1), at frequency Ω. Second, we apply a spatial Fourier
filter to remove flow structures associated to wave vectors k such that kX kZ > 0. This procedure
is useful to remove secondary wave beams reflecting on the tank walls, which intersect the pri-
mary beam characterized by kX kZ < 0 and induce spatial oscillations of the wave envelope [see
Fig. 3(c)].

Finally, we remap the velocity fields in the tilted frame (x, z) of the beam, with x the distance
from the source, making the angle θ = cos−1(σ/2Ω) to the horizontal, and compute the out-of-plane
vorticity component ωy. A standard second-order finite difference scheme is used to compute ωy,
which is comfortably resolved by our twin PIV measurements ensuring at least 40 grid points per
wavelength at all distance x from the source. The vorticity and velocity envelopes of the wave field
are finally computed as ω0(x, z) = ⟨2ω2

y⟩1/2 and u0(x, z) = ⟨2u2
x⟩1/2, with ⟨⟩ a temporal average.

IV. RESULTS

We first compare the spatial decay of the vorticity envelope of the wave beam for the pulsating
and oscillating sources. Vorticity is used here instead of velocity to compare against theory (12)
because it is less sensitive to residual large scale flows. The centerline vorticity ω0(x, z = 0) is
plotted as a function of the distance x from the source in Fig. 4(a) for Ω = 1.05 rad s−1 (θ ≃ 56◦).
The distance is normalized by the viscous length ℓ, and vorticity ω0 is normalized by the source
velocity Aσ and ℓ. For both sources, a power law decay of the vorticity is observed far from the
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source, but with a different exponent: ω0 ∼ x−1.00±0.05 for the oscillating source, starting close to the
source (x/ℓ > 10) and extending over nearly two decades; ω0 ∼ x−0.72±0.10 for the pulsating source,
starting much further from the source (x/ℓ > 200) and hence visible over a limited range of x.
These exponents are in good agreement with the predictions for a monopole and a dipole source,
x−2/3 and x−1, respectively [see Eq. (12)]. Exponents measured at other values of σ/2Ω = cos θ,
reported in Fig. 4(b), are consistent with these numbers and do not show any trend with θ.

Another distinctive property of a wave beam emitted by a monopole or a dipole disturbance is
the transverse vorticity profile, given by the function f1(η) or f2(η), respectively. Figure 5 shows
the normalized vorticity profile ωy(x, z, t)/ω0(x, z = 0) for both sources as a function of the reduced
transverse coordinate η = z/(x1/3ℓ2/3), at the time at which ωy is maximum at the centerline. The
normalized profiles, shown here for a distance x/ℓ = 330, are independent of x provided that x
is large enough, i.e., in the region showing a well-defined power-law decay (x/ℓ > 200 for the
pulsating source and x/ℓ > 10 for the oscillating source). We compare these profiles against the
Moore–Saffman functions taken at the same phase, ωy(x, η, t)/ω0(x, η = 0) = cm+1(η)/cm+1(0), for
m = 0 and m = 1. The agreement is excellent for both sources, for |η | up to 5, clearly confirming
that the order of the Moore–Saffman function that best describes the wave envelope is governed
by the multipole order of the source. At larger distance from the beam centerline (|η | > 5), the
discrepancy between the theoretical and experimental profiles probably originates from residual
fluid motions associated to reflected wave beams that cannot be eliminated by the Fourier filtering
procedure.

The flow rate across the wave beam provides another confirmation of the match between the
wave beam order and the source multipole order. We compute the flow rate q(t) per unit length
by integration over η of the instantaneous velocity ux(x, η), using a truncation at |η | = 6 to reduce
disturbance from fluid motions out of the primary beam of interest. The theoretical flow rate ampli-
tude for each wave beam is qth = πℓ2/3x1/3u0(x, η = 0) for the monopole source and zero for the
dipole source. We find a normalized flow rate q/qth ≃ 1.0 ± 0.05 for the pulsating cylinder and
0.07 ± 0.05 for the oscillating cylinder (the non-zero value in the latter case originates from the
truncation of the integral). This normalized flow rate does not depend significantly on the distance
from the source in the far-field for both disturbances (to within ±0.05).

We finally turn to the description of the distance x beyond which the scaling law holds for
the far-field decay of the wave amplitude. Figure 4(a) shows that the vorticity amplitude decreases
at all x for the oscillating source, with a well-defined power law beyond x/ℓ ≃ 10, while it is
non-monotonic for the monopole source with a maximum at xc/ℓ ≃ 110 ± 10. This non-monotonic
profile originates from the transition from a bimodal beam close to the source to a unimodal beam
far from the source, as illustrated by the close-up view in Fig. 6. Because of the large extent of

FIG. 4. (a) Vorticity envelope ω0(x, z = 0) along the direction of the wave beam for the pulsating (thick line) and oscillating
(thin line) sources (Ω= 1.05 rad s−1, θ ≃ 56◦, and ℓ = 0.76 mm). The lines show power laws of exponents −2/3 and −1
expected theoretically for a monopole and a dipole source, respectively. (b) Vorticity decay exponent as a function of the
propagation angle θ = cos−1(σ/2Ω): (⃝), pulsating source; (�), oscillating source.
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FIG. 5. Normalized transverse vorticity profiles ωy(x,η, t)/ω0(x,0) as a function of the reduced transverse coordinate
η = z/(x1/3ℓ2/3), compared to the theoretical vorticity profiles cm+1(η)/cm+1(0). ⃝, pulsating source (m = 0); �, oscillating
source (m = 1). The profiles are measured at a distance x/ℓ = 330 from the source, in the region where both beams show a
power law decay, and are shown for the time at which the vorticity is maximum at the center of the beam.

the pulsating cylinder compared to the viscous length, the wave field close to the source corre-
sponds to two separate beams propagating in the same direction θ = cos−1(σ/2Ω), with a shift of
z = ±R0 = ±8.9 mm from the axis of the far-field beam. Close to the source, the transverse profile
is therefore bimodal, with a local minimum at z = 0, while it becomes unimodal for large distances
with a maximum at z = 0, with a transition occurring around xc.

This bimodal-to-unimodal transition, a classical feature of waves emitted from a source of large
extent, has been mainly described for internal waves excited by oscillating disturbances.31–33,35,42,43

Figures 1(a) and 1(b) provide a simple sketch of this transition for a pulsating and an oscillating
cylinder of large extent. The oscillating boundary layer over the cylinder detaches at the four critical
lines, where the local slope equals the wave beam angle θ, forming eight wave beams of non-zero
instantaneous flow rate. The far-field beam in a given direction results from the merging of two
parent beams propagating along the same direction, which are in phase for the pulsating cylinder
and out-of-phase for the oscillating cylinder. The combination of two in-phase parent beams of
order m separated by a normalized transverse distance η0 is given by fm(η + η0/2) + fm(η − η0/2),

FIG. 6. Contour plot of the vorticity envelope ω0 from the close-view camera for the pulsating source at θ = 56◦, showing
the transition from a bimodal to a unimodal wave beam. The white circle shows the source and the white line the far-field
wave beam axis. The star marker indicates the location xc/ℓ = 110 at which ω0(x) is maximum in Fig. 4(a).
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which far from the source (η0 ≪ 1) simply gives a beam of order m. On the other hand, the combi-
nation of two out-of-phase parent beams of order m is given by fm(η + η0/2) − fm(η − η0/2) ≃
η0 f ′m(η) = iη0 fm+1(η), yielding a beam of order m + 1: this is consistent with the observation of
a far-field wave beam of zero flow rate (m = 1) emitted from the two nonzero flow rate sources
(m = 0) at the critical lines for the oscillating cylinder.

Determining the merging distance xc requires the full resolution of the flow close to the wave-
maker. This computation is given in Hurley and Keady42 and Voisin33 for oscillating cylinders and
spheres in a stratified fluid. Qualitatively, we can estimate xc from the spreading law δ(x) ∼ ℓ2/3x1/3

of each parent beam, yielding a merging distance xc such that δ(xc) ≃ 2R0 given by xc/ℓ ∼ (R0/ℓ)3.
The radius ratio between the pulsating and oscillating cylinders (R0 = 8.9 and 3.0 mm, respectively)
indicates that xc/ℓ is expected much larger for the pulsating cylinder. For the oscillating cylinder,
the predicted merging distance is of order of the cylinder radius, so that the bimodal wave beam
cannot be observed, which is consistent with the monotonic decay of ω0(x).

V. CONCLUSION

In this paper, we analyzed the decay of a two-dimensional inertial wave beam and showed that
it is set by the multipole order n of the source from which it is emitted. Experimental measurements
are reported for sources of the first two orders: monopole (n = 0) and dipole (n = 1). We find that
the structure of the wave beam is well represented by a Moore-Saffman37 (or Thomas-Stevenson30)
function of order equal to the multipole order of the source. The wave envelope decays as a power
law of the distance from the source, with an exponent governed by the order of the source (x−(n+1)/3

for the velocity and x−(n+2)/3 for the vorticity). These properties, demonstrated here for inertial
waves in rotating fluids, should also hold for internal waves in stratified fluids.

The steeper decay of the wave amplitude as the multipole order is increased indicates that the
far-field structure of a wave beam is dominated by the lowest order of the source, i.e., by its first
nonzero moment (flow rate, momentum, or higher order moment). In most practical situations, the
nature of the source can be discriminated by its instantaneous flow rate, either nonzero for a mono-
pole source or zero for a dipole or higher order source. This means that a wave beam emitted from
any source of nonzero instantaneous flow rate must be dominated in the far field by its monopole
component. Such monopole sources are relevant to most natural flows (e.g., conical wave beams in
the fluid core of planets and internal tide generation over ocean topography): the detachment of the
oscillating boundary layers at the critical lines produces oscillating jets in the bulk, corresponding
to a weak spatial decay. On the other hand, oscillating disturbances immersed in the fluid (a typical
configuration of most laboratory experiments in rotating or stratified fluids) produce in the far field
beams of zero instantaneous flow rate, resulting in a stronger spatial decay.
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APPENDIX: CONSERVATION LAWS FOR ARBITRARY MULTIPOLE ORDER

Equations (17) and (23) relate the zeroth and first moments of the longitudinal velocity to the
flow rate and momentum of monopole (n = 0) and dipole (n = 1) sources. In this appendix, we
generalize these relations to sources of arbitrary multipole order n. We introduce arbitrary orthog-
onal coordinates (x1, x2) in the plane (X, Z), with (u1,u2) the associated velocity components. The
rate of expansion µ(X, Z, t) of a source of multipole order n has zero moments of order 0 to n − 1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  129.175.97.14 On: Fri, 19 Jun 2015 13:25:42



066602-12 Machicoane et al. Phys. Fluids 27, 066602 (2015)

and finite nth moments given by

qi1· · ·in(t) =


xi1 · · · xinµ(X, Z, t) dXdZ. (A1)

These nth moments form a tensor of rank n composed of n + 1 independent scalars. The rate of
expansion is of the form

µ(X, Z, t) = (−1)n
n!

2
i1=1

· · ·
2

in=1

qi1· · ·in(t)
∂n

∂xi1 · · · ∂xin

δ(X)δ(Z). (A2)

Using the identity

∇ · (xi1 · · · xinu) = xi1 · · · xin(∇ · u) + ui1xi2 · · · xin + · · · + xi1 · · · xin−1uin (A3)

and integrating over the domain D of Fig. 2 yield ∞

−∞
xi1 · · · xinux dz = 1

4 qi1· · ·in

+

 ∞

0

 ∞

0
(ui1xi2 · · · xin + · · · + xi1 · · · xin−1uin) dXdZ. (A4)

We choose (x1, x2) = (x, z) and i1 = · · · = in = 2, so that xi1 = · · · = xin = z. The corresponding
transverse velocity ui1 = · · · = uin = uz is negligible, so the last integral vanishes in Eq. (A4). We
finally obtain Eq. (24), which generalizes Eqs. (17) and (23) to arbitrary multipole order n.
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