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1.  Introduction

Three-dimensional particle tracking velocimetry (3D-PTV) is 
a Lagrangian method that is commonly used in fluid dynamic 
experiments to capture information about individual trajec-
tories. The particles can be flow tracers if one is interested 
in characterizing the flow itself (e.g. turbulence dispersion, 
turbulence statistics, characteristic times and lengths) or dis-
perse-phase particles if one wants to study the behavior of a 
second phase in a multiphase flow (e.g. particle slip velocity 

or acceleration, response time, and preferential concentration) 
[1, 2]. Additionally, tracking both flow tracers and disperse-
phase particles, it is possible to discriminate the velocity 
fields for both phases to understand the underlying multiphase 
flow dynamics. The reconstructed particle trajectories allow 
for measurements of velocity and accelerations. If there are 
enough tracks captured, average quantities can be estimated 
on a grid, yielding Eulerian maps (3D3C velocity field) and 
other common Eulerian metrics, such as second order struc-
ture functions [3].
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Many 3D-PTV track-forming algorithms have been pro-
posed in the literature [4–22], and these methods vary based 
on the number of frames used to find particle trajectories 
(from 2 to N frames), the cost function used to assign parti-
cles to existing tracks, and the initialization methods used to 
create new tracks. The tracking scheme used for 3D-PTV is 
critical for accurate results. For example, if an incorrect par-
ticle position is assigned to a track in one time step, it not only 
creates a tracking error in that frame but can also propagate to 
subsequent frames and to other tracks: the incorrect particle 
assignment removes the particle from its true track, which 
can have two negative effects. First, the complete track will 
no longer be recovered. This can lead to errors in subsequent 
frames since the particles that were part of this track can now 
be assigned to other tracks. Second, this erroneous assignment 
also interrupts the track of the particle whose trajectory has 
been erroneously assigned. This can lead to errors in subse-
quent frames since the future particle locations (that are part 
of the correct track that has been continued in error) can now 
be assigned to other tracks.

Another important consideration besides the tracking 
scheme itself is the initialization of the tracking scheme: the 
main focus of this article. The initialization method introduced 
here utilizes and extends the ideas proposed in some of the 
first 3D-PTV papers [4–7, 9–12, 14], which used a search area 
for track initialization. These works used circular search areas 
for the initialization, but we will consider anisotropic search 
volumes that are adjustable in three different directions based 
on the flow characteristics being studied. For example, for a 
strong mean flow, the size of the search box can be adjusted 
based on the predicted flow velocity in the direction of the 
mean flow and can be smaller in the non-mean flow direc-
tions. This improves the accuracy of the tracking since it will 
limit the number of tracks started, which also aids in computa-
tional efficiency. Additionally, to our knowledge, there has not 
been a detailed analysis exploring the initialization of tracking 
algorithms, especially in different flow conditions.

Advanced 3D-PTV approaches, such as shake-the-box, have 
recently been developed and have shown great success at very 
high particle seeding densities [23], allowing Eulerian inter-
polation to produce instantaneous 3D3C velocity fields. Such 
methods, however, require advanced equipment (high power 
lasers with repetition frequencies in the kilohertz, multiple 
cameras, and specialized software) and their use is non-trivial. 
Shake-the-box methods have very significant computational 
costs and have complex set-up configurations. Thus, there is 
a continued need for accurate multiframe 3D-PTV algorithms 
to resolve turbulent flows in which seeding density and time-
resolution do not require the added complexity of shake-the-
box, but where current methods have either low accuracy or 
low yield of correct trajectories. The method proposed can 
be used with only one camera (capturing particles in a thick 
plane or using shadowgraphy), multiple cameras (illuminating 
a volume and resolving 3D flow or particle statistics), and is 
open-source (https://github.com/multiphase-cardiovascular-
flow-lab/4BE-ETI). Additionally, the inputs to the proposed 
tracking algorithm depend solely on known flow character-
istics (e.g. the expected maximum displacement of particles 

between frames). Consequently, the proposed tracking method 
performs extremely well in multiple simple applications such 
as dispersion in a turbulent channel flow. An example applica-
tion is 2D tracking with one camera and backlighting, where 
the 3D physical space is projected onto the 2D sensor of the 
camera. The method performs extremely well in this appli-
cation, even at higher particle seeding densities or in flows 
where there are large particle displacements between frames.

Malik et al [13] and Dracos [15] introduced a four-frame 
particle tracking method for 3D-PTV that minimizes changes 
in acceleration (4MA). Ouellette et al [19] then extended this 
algorithm and established a framework to evaluate the accuracy 
of four particle tracking algorithms. Each algorithm differs in 
the number of frames used to find the most likely position of 
the particle in the next step of the track, or on the cost func-
tion used to evaluate which one of the possible matches best 
extends the current track. Of the four different track assign-
ment methods and cost functions explored, the four-frame 
best estimate method is shown to have superior performance 
in homogeneous isotropic turbulence. Each particle track is 
initialized by choosing the particle’s nearest neighbor (in 3D 
space) in the next frame. The nearest neighbor initialization 
method works well when there is zero average flow velocity 
and when the particles displacement between frames is small 
compared to the inter-particle distance. However, it starts to 
fail when the particles move a distance comparable to the min-
imum particle-particle distance between frames (trackability 
limit). When the distance that the particles travel between two 
frames is much longer than average inter-particle distance, 
tracking is impossible without additional heuristics or detailed 
knowledge of the flow [8, 13, 15, 19]. Additionally, its acc
uracy decreases drastically if there is an average flow that is 
inhomogeneous, as the mean flow can systematically bring 
other particles near the location of the original particle in the 
previous frame. If the mean flow is homogeneous or varies 
with time or space in a smooth and simple manner, the user 
can introduce a velocity guess for nearest-neighbor initializa-
tion to correct for this bias, but this method is prone to errors 
in the tracking when there is unsteady flow or velocity gradi-
ents, even for a simple canonical flow such as Poiseuille flow.

This paper focuses on extending the 4BE method because 
it has been used extensively in turbulence research since its 
introduction [24–30], becoming a leading tool in turbulence 
and multiphase experimental research. Additionally, as the 
4BE method is simply the 4MA algorithm with a modified 
cost function, the results of modifying the initialization of 
4BE will also be applicable to 4MA tracking algorithms. To 
do so, we introduce a modified initialization coupled with the 
4BE method to increase tracking performance and increase 
the ‘yield’ of tracks as a percentage of possible tracks started 
by particles detected in the images, while maintaining the acc
uracy (percentage of correct tracks from the total number of 
tracks reported). The proposed modified initialization method 
uses a customizable search in frame n  +  1 to initialize mul-
tiple tracks from a single particle position in frame n. Each of 
these potential tracks are then followed through the next two 
frames n  +  2 and n  +  3, and the cost function for each poten-
tial track is minimized only after all possible trajectories for 
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the original particle in frame n have been considered through 
the three next frames. The geometry of the initialization search 
region and the maximum number of track candidates that are 
started from a single particle can be adjusted to adapt them to 
a large variety of flow conditions.

Two direct numerical simulation (DNS) datasets, forced 
homogenous isotropic turbulence and turbulent channel flow, 
were used to validate this new 3D-PTV initialization method 
and to compare its performance to the 4BE with nearest 
neighbor initialization. The forced isotropic turbulence 
dataset was used to explore tracking in a canonical setting 
where there is zero average velocity. In contrast, the turbu-
lent channel flow dataset was used to look at tracking when 
there is a non-zero, inhomogeneous average flow. Tracking 
performance was then analyzed using previously introduced 
metrics [13, 19]. For both datasets, we show that the modi-
fied method proposed reduces tracking error and increases the 
track number yield, with a moderate computational cost that 
is affordable with modern tools. Additionally, for the turbulent 
channel flow, the tracking error for the modified initialization 
method remains significantly smaller than the tracking error 
for the nearest neighbor initialization even for extreme values 
of the non-dimensional particle displacements between image 
frames.

The paper is organized as follows: the four-frame best 
estimate tracking algorithm and the modified method pro-
posed here are introduced in section 2; the direct numerical 
simulation datasets used to validate the modified initialization 
method are briefly described in section 3.1; the results from 
the comparison between the initialization methods are then 
explored in section 3.2; and the conclusions from this study 
and potential for applications are summarized in section 4.

2.  Modified four-frame best estimate Lagrangian 
tracking method with enhanced track initialization

The simplest particle tracking velocimetry technique, using the 
position of particles in two consecutive frames and choosing 
the nearest neighbor in frame n  +  1 as the most likely posi-
tion of the particle in frame n, may lead to wrong matches 
when increasing the number of particles in the field of view 
and/or the displacement of particles between frames. To over-
come this limitation, multiframe particle tracking methods 
were developed ([6–8, 11, 13–22] and references within). 
Malik et  al [13] and Dracos [15] introduced a four-frame 
particle tracking method that minimizes changes in accelera-
tion (4MA). Ouellette et al [19] extended this algorithm by 
introducing a new cost function that minimizes the distance 
between a particle in the fourth frame and its estimated posi-
tion in that frame; this method is known as the four-frame best 
estimate (4BE) method.

Briefly, the four-frame best estimate algorithm uses four-
frames (n, n  +  1, n  +  2, and n  +  3) to reconstruct particle 
trajectories, as illustrated in figure  1(a). Individual tracks 
are initialized by using the nearest neighbor method, which 
chooses as the second position in the track the particle that 
minimizes the distance between its location in frame n  +  1 

and the original particle position in frame n. Once a track is 
started in this way, these first two locations in the track are 
used to predict the position x̃n+2

i  of the particle in frame n  +  2:

x̃n+2
i = xn+1

i + ṽn+1
i ∆t� (1)

where xn+1
i  is the position of the particle in frame n  +  1, ṽn+1

i  
is the predicted velocity, and ∆t  is the time between frames. 
A search region is then defined around this predicted location 
in frame n  +  2 to look for particles that are candidates to con-
tinue the track. The tolerance in the search is set to be as small 
as possible (usually a few pixels) since it is aimed at finding a 
single particle whose actual location in frame n  +  2 is closest 
to the prediction from frames n and n  +  1. If no particle is 
found, the track is abandoned. If one particle is found, the 
track is continued with that particle. If more than one particle 
is found within this search region, each one can be used to pre-
dict a set of possible track continuations x̃n+3

i  in frame n  +  3:

x̃n+3
i = xn+1

i + ṽn+1
i (2∆t) +

1
2

ãn+1
i (2∆t)2� (2)

where ãn+1
i  is the predicted acceleration. A search region is 

defined around each of the x̃n+3
i  possible track locations and 

actual particle locations found in those are used to extend the 
track candidates from frame n  +  2 to frame n  +  3. The 4BE 
algorithm chooses the most likely location of the particle and, 
therefore, the most likely track, by minimizing the cost func-
tion φn

ij:

φn
ij = ||xn+3

j − x̃n+3
i ||.� (3)

Equation (3) minimizes the distance between the actual 

particles xn+3
j  and their predicted locations x̃n+3

i . The track 
with the lowest cost represents the best candidate for track 
continuation.

While 4BE with nearest neighbor initialization (4BE-NNI) 
is a very good compromise between low computational cost 
and tracking accuracy and efficiency, it discards many tracks 
that are incorrectly started by the nearest neighbor, thus pri-
oritizing quick computational turn-around over the efficiency 
(the ratio of tracks detected to the total number of new par-
ticles where a track can be started). Additionally, there are 
certain cases where it can lose accuracy (the ratio of correct 
tracks to the total number of tracks completed). When the 
particle inter-frame displacement is comparable to the inter-
particle distance for a significant number of particles (either 
because of high particle velocity fluctuations, or because of 
particle clustering reducing the inter-particle distance well 
below the median predicted from the volume fraction, or the 
combination of both), the percentage of bad tracks started 
with the nearest neighbor is high. These bad tracks will either 
be abandoned after frame n  +  1 (low efficiency) or be com-
pleted erroneously in frames n  +  2 and n  +  3 (low accuracy).

We have developed the enhanced track initialization (ETI) 
to complement the strengths of the 4BE method and over-
come its challenges, thereby extending its applicability to 
highly turbulent and inhomogeneous flows with high particle 
density, the traditional barrier between 3D-PTV methods and 

Meas. Sci. Technol. 30 (2019) 045302



A Clark et al

4

time-resolved high spatial resolution shake-the-box-PTV or 
PIV. Figure 1(b) highlights the features of the 4BE-ETI algo-
rithm. This method uses multiple particle locations in frame 
n  +  1 (all particles found within the search region based on 
the estimated maximum particle displacements between two 
frames) to initialize, without prejudice for which one is more 
likely, multiple tracks. The shape and size of this initial search 
region is determined based on the flow characteristics. The 
initial dimensions of the search region were systematically 
determined using 110% of the estimated maximum particle 
displacement (in the x, y , and z directions) for each dataset. 
Typically, these maximum displacement values were different 
in each spatial direction, so the dimensions for the initial 
search region varied in each direction. The subsequent search 
region dimensions were determined using the mean displace-
ment of the particles between frames. Both the initial and 
subsequent search regions were designed with a large safety 
factor, chosen to be conservative so that no tracks would be 
missed, while not increasing the computational time exces-
sively. This allows the algorithm to explore multiple possible 
trajectories for each particle and eliminates the assumption 
that the closest particle in the next frame is the only option 
when starting a track. Subsequent search regions in frames 
n  +  2 and n  +  3, used for track continuation, are smaller since 
the continuation search uses a better estimate of local particle 
displacement, based on the velocity and acceleration estimates 
from the positions found in frames n, n  +  1, and n  +  2. This 
decreases computational costs because it limits the number of 
particles found, and therefore the number of potential tracks to 
follow, thus limiting possible track continuations.

3.  DNS benchmark of tracking algorithm

3.1.  Dataset description

The performance (both in terms of tracking accuracy and 
efficiency) of the 4BE-ETI algorithm was analyzed and com-
pared to the results from the traditional 4BE-NNI method 

using three-dimensional direct numerical simulations (DNS) 
available through the Johns Hopkins University Turbulence 
Databases [31, 32]. Two datasets were explored: forced homo-
geneous isotropic turbulence and turbulent channel flow [33].

The homogenous isotropic turbulence (HIT) dataset was 
selected to evaluate tracking when there was no mean flow. 
It is similar to both the DNS and the experimental datasets 
used to validate the original 4BE-NNI tracking algorithm 
[34]. The domain for the DNS of isotropic turbulence was 
2π × 2π × 2π , corresponding to a 10243 spectral grid, and 
used periodic boundary conditions. The Taylor-scale Reynolds 

number is Reλ = u′λ
ν = 418. In contrast, the turbulent channel 

(Channel) dataset was selected to evaluate tracking when 
there was a strong mean flow that is strongly inhomogeneous. 
The turbulent channel DNS domain was 8π × 2 × 3π , with 
periodic boundary conditions. The friction velocity Reynolds 

number was Reτ = Uch
ν = 103.

To query the databases, the flow was initially seeded with 
30 000 tracer particles for the HIT dataset and 50 000 tracer 
particles for the channel dataset throughout the entire volume. 
More particles were used for the channel dataset to maintain 
approximately constant particle number concentration, since 
the fluid domain volume was larger. The particles were then 
advected through the domain for each time step based on 
the resolved DNS flow field [35]. The trajectories were then 
sampled in a subdomain, creating a time sequence of particle 
locations as their trajectories entered and left the measure-
ment volume, as is typical in experiments. The 4BE tracking 
method, both with traditional NNI and the proposed ETI, 
was applied to the particle positions, and the tracking results 
were compared to the ground-truth trajectories from the DNS 
datasets.

Several subsets of each dataset were generated by 
increasing the time between frames, thus varying the particle 
inter-frame displacements. The number of particles in each 
subset was kept constant. A wide range of values of the non-
dimensional displacement-spacing ratio ξ, defined as the ratio 
of the average distance each particle moves between frames to 

NearestNeighbor

n n + 1 n + 2 n + 3 n n + 1 n + 2 n + 3

(a) (b)

Figure 1.  Schematic comparison between tracking methods. Particle locations are denoted with filled symbols and predicted particle 
locations are denoted with hollow symbols. (a) An example of the 4BE-NNI method. (b) An example of the 4BE-ETI method.
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the average separation between particles in a given frame [13, 
19], is used in this benchmarking of the tracking methods to 
evaluate their domain of applicability in terms of maximum 
particle density and maximum particle displacement between 
frames. When ξ is small, tracking is trivial because the parti-
cles move very little between frames and there are not many 
particles to consider for track continuation. However, as this 
non-dimensional displacement increases, tracking becomes 
more difficult because the particles move a large amount 
between frames and there are many particles that are candi-
dates per frame to continue a track. The results of this study 
are shown over a wide range of ξ values, from trivial to very 
challenging, in terms of tracking difficulty.

3.2.  Results

The performance of the different initialization methods was 
evaluated by looking at the tracking error, defined as [19]:

Etrack =
Nimperfect

Ntotal
� (4)

where Nimperfect is the number of tracks that contain at least 
one incorrect particle position (and correspondingly velocity 
and acceleration), while Ntotal is the total number of tracks 
in the dataset. A perfect track must start at the same point as 
the actual track and must contain no spurious locations. When 
Etrack  is zero, the tracking code perfectly tracks all the tracks 
in the DNS dataset. When Etrack  is close to or equal to one, 
the tracking code fails for almost every particle location, and 
most of the tracks in the dataset generated from the DNS are 
not recovered.

The results for the homogeneous isotropic turbulent flow 
are shown in figure 2. The Enhanced Track Initialization pro-
posed here (4BE-ETI) performs better than the traditional 
nearest neighbor initialization (4BE-NNI) for this flow, where 
the mean velocity is zero and the inhomogeneity is low. For 
ξ � 0.05, the proposed 4BE-ETI method has zero tracking 
error. For 0.05 < ξ � 0.2, the two methods follow a similar 
trend where the tracking error increases at approximately the 
same rate. For values frequently found in turbulent particle-
laden flow experiments [36–39] where clustering is common, 
0.2 < ξ � 0.7, the tracking error of the proposed 4BE-ETI 
method is half of the nearest neighbor’s (4BE-NNI), extending 
the applicability of this multiframe 3D-PTV method. Finally, 
at very high ξ values (ξ � 0.8), the error in the tracking 
reaches unacceptable values for both tracking methods tested.

Figure 3 shows the results of the tracking applied to the 
particles in turbulent channel flow. The 4BE-ETI performs 
significantly better than the 4BE-NNI for this anisotropic flow 
with spatially-variable non-zero mean velocity. For ξ � 0.2, 
there is zero tracking error when using 4BE-ETI method. For 
ξ values 0.2 < ξ � 0.7, the tracking error is reduced signifi-
cantly in the 4BE-ETI compared to the 4BE-NNI, up to an 
order of magnitude. Finally, at very high ξ values (ξ � 0.7), 
where both methods failed in the HIT flow, the tracking error 
for the 4BE-ETI continues to be much smaller than for the 
4BE-NNI, and has about 10%–20% of incorrect tracks even at 
these high values of ξ. This shows significant advantage of the 

Enhanced Track Initialization method for inhomogeneous and 
anisotropic flows where the error is significantly smaller and 
usage of the method is possible even at high ξ values.

However, from figures 2 and 3, we see that ξ is an incomplete 
metric to compare tracking performance in different types of 
turbulent flows where the mean flow magnitudes differ and the 
levels of inhomogeneity and anisotropy vary from negligible 
to dominant. The 4BE-NNI tracking algorithm has a lower 
tracking error up to higher ξ values in the turbulent channel 
than in the homogenous isotropic turbulence. This discrep-
ancy is due to the fact that ξ does not correctly consider tur-
bulent fluctuations, or spatial inhomogeneity of the mean and 
fluctuating velocities. Therefore, we propose an additional 
metric ξ′, defined as the ratio of the average displacement of 
a particle between frames due to turbulent fluctuations to the 
average separation between particles in a given frame, to more 
accurately compare the tracking in these two different types 

10−1 100

ξ

10−4

10−3

10−2

10−1

100

E
tr

a
ck

4BE − NNI
4BE − ETI

Figure 2.  Tracking performance of the 4BE-ETI method, compared 
to the baseline 4BE-NNI, in forced homogeneous isotropic 
turbulence. At values of ξ < 0.05, the 4BE-ETI tracking error is 
zero.
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Figure 3.  Tracking performance of the 4BE-ETI method, compared 
to the baseline 4BE-NNI, in a turbulent channel flow. At values of 
ξ < 0.2, the 4BE-ETI tracking error is zero.
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of turbulent flows (shown in figure 4). If there are strong tur-
bulent fluctuations, tracking becomes more difficult because 
the velocity and acceleration predictions used to continue the 
tracks become less accurate. Like ξ, when ξ′ is small, tracking 
is trivial because the particles move very little between frames 
and there are not many particles to consider for track con-
tinuation. However, as this ratio increases, tracking becomes 
more difficult because there are more turbulent fluctuations or 
there are more particles per image, or both. For ξ′ � 0.2, we 
see that the 4BE-NNI (HIT) and 4BE-ETI (both Channel and 
HIT) algorithms perform similarly and have tracking errors 
lower than 20%. In the channel flow, the 4BE-NNI method 
performs worse than 4BE-ETI since the initialization fails in 
an inhomogeneous mean flow (even at smaller ξ′, the perfor-
mance of 4BE-NNI is significantly worse than 4BE-ETI). At 
higher values of ξ′, the results for the two datasets begin to 
diverge, which is most likely due to increased tracking diffi-
culty at these high ξ′ values, where the advantages of the novel 
4BE-ETI are more pronounced.

4.  Conclusion

The method used for initialization of the particle tracks in mul-
tiframe 3D-PTV influences tracking performance strongly. 
We have shown that the Enhanced Tracking Initialization 
proposed allows the four-frame best estimate particle tracking 
method to perform significantly better than the nearest 
neighbor initialization. In turbulent channel flow, where the 
inhomogeneity and anisotropy of the flow presents a chal-
lenge to the nearest neighbor, 4BE-ETI has a tracking error up 
to an order of magnitude lower over a wide range of ξ values, 
extending its applicability to densely seeded flows or flows 
where the inter-frame time is limited by the camera frame rate 
or laser repetition rate. The 4BE-ETI method proposed here 
also reduces error in tracking by approximately 50%, with 
respect to the 4BE-NNI, in homogeneous isotropic turbu-
lence. This highlights the flexibility of the 4BE-ETI to choose 
search region size and shape based on the flow characteristics 
to optimize accuracy and efficiency without undue increases 

in computational time. Additionally, automated strategies can 
be easily implemented by running the tracking on a small 
subset of particles, equally spaced along the flow domain, 
with a large initialization region to obtain coarse information 
about the flow and recursively using this information to refine 
the initial search region geometry for an increasing number of 
particles in subsequent passes.
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