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We propose an experimental study on the gravitational settling velocity of dense,
sub-Kolmogorov inertial particles under different background turbulent flows. We report
phase Doppler particle analyser measurements in a low-speed wind tunnel uniformly
seeded with micrometre scale water droplets. Turbulence is generated with three different
grids (two consisting of different active-grid protocols while the third is a regular static
grid), allowing us to cover a very wide range of turbulence conditions in terms of
Taylor-scale-based Reynolds numbers (Reλ ∈ [30–520]), Rouse numbers (Ro ∈ [0–5]) and
volume fractions (φv ∈ [0.5 × 10−5–2.0 × 10−5]). We find, in agreement with previous
works, that enhancement of the settling velocity occurs at low Rouse number, while
hindering of the settling occurs at higher Rouse number for decreasing turbulence energy
levels. The wide range of flow parameters explored allowed us to observe that enhancement
decreases significantly with the Taylor–Reynolds number and is significantly affected by
the volume fraction φv . We also studied the effect of large-scale forcing on settling velocity
modification. The possibility of changing the inflow conditions by using different grids
allowed us to test cases with fixed Reλ and turbulent intensity but with different integral
length scale. Finally, we assess the existence of secondary flows in the wind tunnel and
their role on particle settling. This is achieved by characterising the settling velocity at
two different positions, the centreline and close to the wall, with the same streamwise
coordinate.
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1. Introduction

Turbulent flows laden with particles are present in both environmental phenomena
and industrial applications. For instance, water droplets, snowflakes and pollutants in
atmospheric turbulence, sediments in rivers and industrial sprays all involve turbulent
environments carrying inertial particles (Crowe, Troutt & Chung 1996; Shaw 2003;
Monchaux, Bourgoin & Cartellier 2012; Li et al. 2021). Inertial particles do not follow
the fluid velocity field as tracers, having their own dynamics that depend on both their
finite size and their density ratio compared with that of the carrier phase.

Two phenomena resulting from the influence of turbulence on the motion of inertial
particles have been widely studied: preferential concentration and modification of the
settling velocity. Preferential concentration refers to the fact that an initially uniform or
random distribution of particles will form areas of clusters and voids (Maxey 1987; Squires
& Eaton 1991; Aliseda et al. 2002; Obligado et al. 2014; Sumbekova et al. 2017) due to
the accumulation in certain regions of the turbulent flow where the hydrodynamic forces
exerted by the flow tend to drive the particles. Furthermore, settling velocity modification
occurs when particles immersed in a turbulent flow have their settling speed Vs altered
compared with that in a stagnant fluid or laminar flow VT (Wang & Maxey 1993; Crowe
et al. 1996; Aliseda & Lasheras 2011). These two features of turbulent-laden flow are
known to be linked together as the settling velocity of a particle can be increased due to
an increase of the particle local concentration (Aliseda et al. 2002; Gustavsson, Vajedi &
Mehlig 2014; Huck et al. 2018).

Regarding the modification of the settling velocity, multiple experimental and numerical
studies have shown that turbulence can both hinder (Vs < VT) or enhance the particle
settling velocity (Vs > VT). While several studies have reported enhancement of the
settling velocity (Wang & Maxey 1993; Aliseda et al. 2002; Bec, Homann & Ray 2014;
Rosa et al. 2016; Monchaux & Dejoan 2017; Falkinhoff et al. 2020), others show evidence
of hindering only (Akutina et al. 2020; Mora et al. 2021) or of both types of modification
(Nielsen 1993; Good, Gerashchenko & Warhaft 2012; Sumbekova et al. 2016; Petersen,
Baker & Coletti 2019). While the nature and number of mechanisms controlling this
phenomenon is still a matter of debate, several models have been proposed in the literature,
sometimes even giving contradictory predictions.

Enhancement of the settling velocity can be explained by the preferential sweeping
mechanism, also known as the fast-tracking effect, where inertial particles tend to spend
more time in downwards moving regions of the flow than in upwards flow (Wang & Maxey
1993). Some mechanisms have been proposed as well to explain hindering. The vortex
trapping effect describes how light particles can be trapped inside vortices (Nielsen 1993;
Aliseda & Lasheras 2006). The loitering mechanism assumes that falling particles spend
more time in upward regions of the flow than downward regions (Chen et al. 2020), while
a nonlinear drag can also explain that particles are slowed down in their fall by turbulence
(Good et al. 2014). Models have been developed to estimate the influence of clustering
and particle local concentration on the settling rate enhancement (Alipchenkov & Zaichik
2009; Huck et al. 2018).

However, even in the simplified case of small, heavy particles in homogeneous
isotropic turbulence (HIT) no general consensus has been found on the influence
of turbulence, through the Taylor-scale-based number Reλ, on the transition between
hindering and enhancement. The Taylor–Reynolds number Reλ = u′λ/ν is based on the
Taylor microscale λ where u′ and ν are the carrier phase root-mean-square (r.m.s.) of
the fluctuating velocity and kinematic viscosity, respectively. The influence of Reλ on
the maximum of enhancement, i.e. when Vs − VT reaches its maximum, is also still
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Settling of inertial particles

under debate. Depending on the range of Reλ, some studies found that the maximum
enhancement increases with Reλ (Nielsen 1993; Yang & Lei 1998; Bec et al. 2014; Rosa
et al. 2016; Wang, Lam & Lu 2018), whereas other studies show the opposite trend (Mora
et al. 2021). Furthermore, a non-monotonic behaviour of max(Vs − VT) with Reλ has
also been reported (Yang & Shy 2021), where max(Vs − VT) corresponds to the maximal
settling velocity with respect to the terminal velocity, with both Vs and VT being functions
of the particle size.

Several non-dimensional parameters have been found to play a role on the settling
velocity. The dispersed phase interactions with turbulent structures are characterised by the
Stokes and Rouse numbers (Maxey 1987), whereas the magnitude of turbulence excitation
is quantified by the Taylor–Reynolds number. The Stokes number, describing the tuning
of particle inertia to turbulent eddies turn over time, is defined as the ratio between the
particle relaxation time and a characteristic time scale of the flow St = τp/τk, where τk
has been shown to be represented by the Kolmogorov time scale τη. The Rouse number
– also known as the settling parameter Sv – is a ratio between the particle terminal speed
and the velocity scale of turbulence fluctuations, in this case the turbulent velocity r.m.s.,
Ro = VT/u′. Hence, it is a competition between turbulence and gravity effects. While all
these parameters are relevant for modelling and understanding the interactions of inertial
particles and turbulence, there is still no consensus even on the set of non-dimensional
numbers required to do so. Furthermore, the determination of length and time flow
scales relevant to the settling speed modification has also been the subject of significant
discussion in the literature. Yang & Lei (1998) determined that a mixed scaling using both
τη and u′ appears to be an appropriate combination of parameters for the present problem.
There is a general agreement that the modification of the settling velocity is a process that
encompasses all turbulent scales and, consistent with even single-phase HIT, a single flow
scale is not sufficient to completely describe it. It has been shown that the particle settling
velocity is affected by larger flow length scales with increasing Stokes number (Tom &
Bragg 2019).

Experimentally, the influence of turbulence on the particle settling velocity has been
studied in an air turbulence chamber (Good et al. 2014; Petersen et al. 2019), channel
flows (Wang et al. 2018), Taylor–Couette flows (Yang & Shy 2021), water tank with
vibrating-grids turbulence (Yang & Shy 2003; Poelma, Westerweel & Ooms 2007; Zhou
& Cheng 2009; Akutina et al. 2020) and wind tunnel turbulence (Aliseda et al. 2002;
Sumbekova et al. 2017; Huck et al. 2018; Mora et al. 2021). However, measuring the
particle settling velocity in confined flows, such as in a wind tunnel, can be challenging
due to the recirculation currents that may arise on the carrier phase. Weak carrier phase
currents in the direction of gravity can be of the order of the smallest particle velocity and
impact significantly the measurements of the settling velocity, (as reported in Good et al.
(2012), Sumbekova (2016), Wang et al. (2018), Akutina et al. (2020), De Souza, Zürner &
Monchaux (2021), Mora et al. (2021) and Pujara et al. (2021)). Akutina et al. (2020) dealt
with this bias by removing the local mean fluid velocity from the particle instantaneous
velocity measurements.

Accurate measurements of settling velocity and the local properties of the carrier-phase
flow are therefore one aspect of major importance to better understand the role of
turbulence on settling velocity modification. This work studies the settling velocity of
sub-Kolmogorov water droplets in wind tunnel grid-generated turbulence. Turbulence is
generated with three different grids (two consisting of different active grid (AG) protocols
while the third is a regular static grid), allowing us to cover a very wide range of turbulence
conditions, with the turbulence intensity u′/U∞ ranging from 2 % to 15 %, Reλ ∈ [34, 520]
and integral length scales L ∈ [1, 15] cm.
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Particle settling velocity and diameter were quantified using a phase Doppler particle
analyser (PDPA), as described in a previous work on the same facility (Mora 2020; Mora
et al. 2021). Our experimental set-up has three unique features that contribute to the
novelty of our results. First, the resolution of the particle vertical velocity is a factor of
10 higher than in Mora et al. (2021). This higher resolution enables the study of the
settling velocity of particles with very small inertia, as small as 1 µm, corresponding
to the range where settling is enhanced. Furthermore, thanks to the increased resolution
in the vertical velocity, we can assess the existence of secondary flows in the wind
tunnel by analysing the carrier flow vertical velocity with the Cobra probe and the PDPA
velocity of tracer particles. We measure the settling velocity at two different positions,
the centreline and near the sidewalls, for the same streamwise location. Additionally, we
perform measurements of the single-phase velocity with a Cobra probe, a multihole Pitot
tube that resolves the average and r.m.s. values of the three-dimensional (3-D) velocity
vector (Obligado et al. 2022), that allows the quantification of small inhomogeneities in
the single-phase flow, for all turbulent conditions studied. We find that the vertical velocity
measured in dilute two-phase conditions is consistent with such inhomogeneities. For
larger values of volume fraction, the vertical velocities become a non-trivial function of
position, streamwise velocity and particle loading. This work, therefore, gives quantitative
experimental evidence of the role and relevance of inhomogeneities and recirculation in
the quantification of the settling velocity in confined domains.

Finally, the generation of turbulence with three different methods allows us to explore
experimental realisations with similar values of Reλ and u′/U∞ but significantly different
values of L (a factor of two different). This allows us to disentangle the role of the large
turbulent scales on settling velocity modification, opening the door to expand available
models to non-homogeneous flows. To the authors’ best knowledge, our work presents
the first experimental evidence capable of discriminating between the influence of large
and small turbulent scales on particle settling. This is relevant not only for real-world
physics, but also to learn from different laboratory set-ups and numerical simulations, as
the ratio of small to large scales is different in each of these studies. In consequence, the
present work is unique as it covers a broad range of turbulent flows, while resolving the
settling velocity of particles as small as 1 µm. These measurements were complemented by
hot-wire anemometry, that resolves all scales of the flow for the three turbulent conditions
studied.

The paper is organised as follows. Section 2 describes the experimental set-up with the
generation of turbulence, the injection of inertial particles and the PDPA misalignment
correction. Section 3 presents the experimental results, with first the raw data and the
presence of secondary currents. The influence of Reλ, as well as other non-dimensional
numbers, on the settling velocity and a scaling of the maximum of enhancement is
then displayed. Here Reλ is shown to have a non-monotonic influence on the settling
enhancement. We found that the integral length scale has an influence on the settling
velocity even for very low Stokes numbers. Section 4 presents the influence of the turbulent
flow large scales on the settling velocity. Finally, § 6 summarises the results and draws
conclusions.

2. Experimental set-up

2.1. Grid turbulence in the wind tunnel
Experiments were conducted in the Lespinard wind tunnel, a closed-circuit wind tunnel
at LEGI (Laboratoire des Ecoulements Géophysiques et Industriels), Grenoble, France.
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Figure 1. (a) Sketch of the wind tunnel with the PDPA measurement system. (b) Picture of the droplet injection
system and, behind it, of the AG in OG mode. (c) Power spectral density of the longitudinal velocity from
hot-wire records normalised by the Kolmogorov scale for an inlet velocity around 4 m s−1. The dashed
line presents a Kolmogorov −5/3 power law scaling, as reference. The inertial particle diameter distribution
averaged over all the experiments and normalised by the Kolmogorov scale is shown on the right-hand axis.
Note that it is plotted against η/dp.

The test section is 4 m long with a cross-section of 0.75 × 0.75 m2. A sketch of the
facility is shown in figure 1(a). The turbulence is generated with two different grids: a
static (regular) and an AG. The regular grid (RG) is a passive grid composed by seven
horizontal and seven vertical round bars forming a square mesh with a mesh size of
10.5 cm. The AG is composed by 16 rotating axes (eight horizontal and eight vertical)
mounted with coplanar square blades and a mesh size of 9 cm, (see Obligado et al. (2011)
and Mora et al. (2019b) for further details about the AG). Each axis is driven by a motor
whose rotation rate and direction can be controlled independently. Two protocols were
used with the AG. In the AG protocol – also referred to as ‘triple-random’ in the literature
(Johansson 1991; Mydlarski 2017) – the blades move with random speed and direction,
both changing randomly in time, with a certain time scale provided in the protocol. We
remark that in the following, AG refers to both the active grid and this protocol. For the
open grid (OG) protocol, each axis remains completely static with the grid fully open,
minimising blockages. These two protocols have been shown to create a large range of
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turbulent conditions, from Reλ ∼ 30 for OG to above 800 for AG (Mora et al. 2019b;
Obligado et al. 2020).

The turbulent intensity u′/U∞ obtained for OG is in the same range as for RG
(≈ 2 %–3 %). The turbulent intensity created by the AG is much larger, just below 15 %.
However, some significant differences exist between RG and OG turbulence: the bar width
of the RG is twice that of the OG (2 cm versus 1 cm) and the OG has a 3-D structure due
to the square blades (see figure 1b for an illustration of the OG). This implies significant
differences in the integral length scale L of the turbulence; ≈ 6 cm for RG versus ≈ 3 cm
for RG. These various grid configurations allowed us to explore different Taylor-scale
Reynolds numbers Reλ, from 34 to 513 at a fixed free stream velocity. Additionally, our
experimental set-up allowed for the study of particles at similar values of u′/U∞ and Reλ,
but different L (with OG versus RG). Matching the AG Reynolds number with the passive
grids was not possible as it would require high wind tunnel velocities in the RG/OG cases,
which would limit the measurements of the settling velocity due to low resolution.

Hot-wire anemometry measurements were taken to characterise the single-phase
turbulence (Mora et al. 2019b). A constant temperature anemometer (Streamline, Dantec
Inc.) was used with a 55P01 hot-wire probe (5 µm in diameter, 1.25 mm in length). The
hot-wire was aligned with the centreline of the tunnel (3 m downstream the turbulence
generation system). Additional measurements were carried out near the wall of the wind
tunnel to check the homogeneity of the turbulence characteristics. Velocity time series
were recorded for 180 s with a sampling frequency Fs of 50 kHz. This sampling frequency
provides adequate resolution down to the Kolmogorov length scale η.

The background flow was also characterised with a Cobra probe: a multihole pressure
probe which is able to capture three velocity components. This multihole Pitot tube probe
(Series 100 Cobra Probe, Turbulent Flow Instrument TFI, Melbourne, Australia) was used
to characterise possible contributions of the non-streamwise velocity components to the
average value. Weak secondary motions in the carrier phase can arise in two-phase flow
conditions due to the fall of inertial particles, as we will see in § 3.2, and in single phase
condition due to confinement effects. The Cobra probe was used in this study to estimate
the mean vertical flow for the latter. The acquisition time of the measurements was set
to 180 s with a data rate of 1250 Hz (the maximum attainable). As the turbulence scales
may reach beyond this frequency, and may not be resolved due to the finite size of the
probe, which has a sensing area of 4 mm2 (Mora et al. 2019b; Obligado et al. 2022), these
measurements are used only to compute the mean and r.m.s. values of the 3-D velocity
vector. To estimate the small angle present between the probe head and the direction of
the mean flow, measurements were collected in laminar flow conditions (i.e. without any
grid in the test section), to estimate the misalignment angle between the Cobra head and
the streamwise direction.

Single-point turbulence statistics were calculated for each flow condition. The turbulent
Reynolds number based on the Taylor microscale is defined as Reλ = u′λ/ν where u′ is the
standard deviation of the streamwise velocity component, ν the kinematic viscosity of the
flow and λ the Taylor microscale. The Taylor microscale was computed from the turbulent
dissipation rate ε with λ =

√
15νu′2/ε, extracted as ε = ∫

15νκ2E(κ) dκ where E(κ) is
the energy spectrum along the wavenumber κ . The small scales of the turbulent flow are
characterised by the Kolmogorov length, time and velocity scales: η = (ν3/ε)1/4; τη =
(ν/ε)1/2; and uη = (νε)1/4. Different methods were used to estimate the integral length
scale. Here L was first computed by direct integration of the autocorrelation function until
the first zero-crossing La = ∫ ρδ

0 Ruu(ρ) dρ and until the smallest value of ρ for which
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Settling of inertial particles

Parameters AG OG RG

U∞(m s−1) 2.6–5.0 2.6–5.0 2.6–5.0
Reλ 268–513 34–55 49–68
u′/U∞(%) 13.2–14.9 1.9–2.1 2.5–2.7
103 × ε(m2 s−3) 140.1–1251.4 6.9–26.8 9.9–59.5
η(µm) 230–406 634–868 511–792
τη(ms) 3.5–11.0 26.7–50.2 17.4–41.9
λ(cm) 1.02–1.29 0.92–1.16 0.83–1.09
La0(cm) 16.3–22.4 3.0–3.1 5.5–8.7
Laδ(cm) 8.5–9.6 1.8–1.9 2.2–2.4
Lvoro(cm) 14.0–24.0 2.3–2.8 3.7–4.5

Table 1. Turbulence parameters for the carrier phase, sorted by grid category computed from hot-wire
anemometry measurements 3 m downstream of the grid. Here U∞ is the free stream velocity, u′ the r.m.s. of the
streamwise velocity fluctuations, Reλ = u′λ/ν the Taylor–Reynolds number and ε = 15νu′2/λ2 the turbulent
energy dissipation rate. Here η = (ν3/ε)1/4 and τη = (ν/ε)1/2 are the Kolmogorov length and time scales.
Here λ =

√
15νu′2/ε and L are the Taylor microscale and the integral length scale, respectively, where three

different methods are used to compute L.

Ruu(ρδ) = 1/e (Puga & Larue 2017; Mora et al. 2019b). The integral length scale was also
estimated from a Voronoï analysis of the longitudinal fluctuating velocity zero-crossings
Lvoro, following the method recently proposed in Mora & Obligado (2020), where an
extrapolation of the 1/4 scaling law was performed when needed. The latter is particularly
relevant for the AG mode, where the value of Ruu has been found, in some cases, to not
cross zero (Puga & Larue 2017). The estimation of L using L = Cεu′3/ε was not used in
this study as the prefactor Cε is not fixed for different turbulent conditions (i.e. different
grids).

Table 1 summarises the flow parameters for all experimental conditions studied.
Figure 1(c) shows the power spectral density of the streamwise velocity computed from
hot-wire time signals at the measurement location (x ≈ 3 m for all cases). The three spectra
depicted in the figure were obtained from the three different grid configurations, all of
them with an inlet velocity of approximately 4 m s−1. The power spectral density was
normalised by the Kolmogorov length and velocity scales η and uη. As expected, the
turbulent flow generated by the AG exhibits a considerably wider inertial range. On the
right-hand side of the figure, for large values of κη, the diameter distribution averaged
over all the experiments is displayed. The diameter distribution, discussed in the next
section, was normalised by the smallest Kolmogorov scale among all conditions (i.e. the
Kolmogorov scale of the AG turbulent flow). It can be observed that the distribution is
polydisperse and particles are always much smaller than the Kolmogorov scale of the
turbulence. Figure 2 shows the Taylor Reynolds number Reλ and the Taylor microscale λ
for different wind tunnel velocities 3 m downstream (at approximately x/M ≈ 30).

2.2. Particle injection
Water droplets were injected in the wind tunnel by means of a rack of 18 or 36 injectors
distributed uniformly across the cross-section. The outlet diameter of the injectors is
of 0.4 mm, and atomisation is produced by high-pressure at 100 bars. The water flow
rate introduced in the test-section by the droplet injection system was measured with
a flow meter for each experiment and varied between 0.5 and 3.4 l min−1. The air
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Figure 2. (a) Taylor–Reynolds number Reλ; (b) integral length scale from the integration of the autocorrelation
to the first zero-crossing; (c) Taylor microscale λ. All plotted versus the mean streamwise velocity obtained from
hot-wire measurements. The different symbols (�), (•) and (�) represent the RG, AG and OG, respectively.
The size of the symbol is proportional to the volume fraction and darker colours correspond to higher mean
velocities.

flow rate in the tunnel was computed using the measured mean streamwise velocity
and the cross-sectional area. The particle volume fraction φv = Fwater/Fair describes the
ratio between the liquid and air volumetric flow rates. With the range of liquid flow
rates and air velocities used in the experiments, the volume fraction φv varied between
φv ∈ [0.5 × 10−5, 2.0 × 10−5]. Here, 18 or 36 injectors were used depending on the
experimental conditions, as low volume fractions could not be reached with 36 injectors.
The resulting inertial water droplets have a polydisperse size distribution with a Dmax
and D32 of ≈ 30 µm and ≈ 65 µm, respectively (Sumbekova et al. 2017), as shown
in figure 1(c), with D32 the Sauter mean diameter. The droplet Reynolds numbers Rep
are smaller than unity. For each grid mode, three different volume fractions were tested,
with three different free stream velocities (U∞ = 2.6, 4.0, 5.0 m s−1). This results in 27
different experimental conditions.

Measurements were collected with a PDPA (Bachalo & Houser 1984). The PDPA
(PDI-200MD, Artium Technologies) is composed of a transmitter and a receiver
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positioned at opposite sides of the wind tunnel. The transmitter emits two solid-state
lasers, green at 532 nm wavelength and blue at 473 nm wavelength. Both lasers are split
into two beams of equal intensity and one of these is shifted in frequency by 40 MHz,
so that when they overlap in space they form an interference pattern. The 532 nm beam
enables us to take the particle’s vertical velocity and diameter simultaneously. The second
beam is oriented to measure the horizontal velocity. The PDPA measurements were
non-coincident, i.e. horizontal and vertical velocities were taken independently, since
recording only coincident data points can significantly reduce the validation rate. The
particle’s horizontal velocity 〈U〉 is assumed to be very close to the unladen incoming
velocity 〈U〉 ≈ U∞. Contrary to the study of Mora et al. (2021) in the same facility,
the transmitter and the receiver had a smaller focal length of 500 mm. This enabled
us to measure the particle vertical velocity with better resolution. The vertical and
streamwise velocity components were recorded with a resolution of 1 mm s−1. The PDPA
configuration allows us to detect particles with diameters ranging from 1.5 µm to 150 µm.
We verified that all velocity distribution were Gaussian, as expected under HIT conditions
(see Appendix B). The measurement volume was positioned 3 m downstream of the
droplet injection (at approximately the same streamwise distance as the hot-wire and
Cobra measurements). In order to quantify the effect of recirculation currents, data were
collected on the centreline of the wind tunnel and at an off-centre location, 10 cm from
the wind tunnel wall. For each set of experimental conditions, at least 5 × 105 samples
were collected. Depending on the water flow rate and the wind tunnel inlet velocity, the
measurement sampling rate varied from 20 Hz to 4800 Hz with an average of 1030 and
580 Hz for the streamwise and vertical velocities, respectively.

2.3. Angle correction
As the settling velocity is only a small fraction of the particle velocity, any slight
misalignment of the PDPA with the vertical axis (y) would result in a large error
on the measurements of this important variable. To correct the optical alignment
bias, the misalignment angle β was computed from very small (dp < 4 µm) olive
oil droplet measurements, as described in Mora et al. (2021). Olive oil generators
produce monodisperse droplet distributions (〈dp〉 ≈ 3 µm), that behave as tracers. Using
the empirical formula from Schiller & Nauman (Clift, Grace & Weber 1978) for the
settling velocity of particles, and assuming that the mean centreline velocity is purely
streamwise, the misalignment between the PDPA and gravity was estimated. Data from
the alignment bias correction is given in Appendix C. The angle β was determined to
be β = 1.5◦ ± 0.3◦. The vertical velocity measurements were then corrected subtracting
the Vβ misalignment bias (proportional to the streamwise velocity and the sine of the
misalignment angle).

3. Results

3.1. Settling velocity of inertial particles as a function of size
Figure 3 presents the corrected averaged settling velocity 〈V〉D − Vβ against the diameter
D and the Stokes number St. Vertical velocity is defined as positive when downwards. In
all figures, we averaged the settling velocity in 10 µm bins, from 0 to 150 µm.

For each experimental condition, as expected, the velocity measurements show that, on
average, larger particles have higher settling velocity.
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Figure 3. Corrected particle vertical velocity 〈V〉D − Vβ averaged over bins of 10 µm against the diameter
(a) and the Stokes number (b). The data from the AG are in solid lines, the OG in dashed line and the RG in
dash–dotted line. The error bars show the estimation of the error in the velocity measurements. Darker colours
correspond to higher mean velocities U∞ and the line width is proportional to the volume fraction.

3.2. Non-zero mean vertical flow in the limit of very small diameter
The ensemble average of the particle equation of motion projected in the direction of
gravity gives

〈vp
y (t)〉 = 〈uy(xp(t), t)〉 + VT , (3.1)

where y is the vertical coordinate directed towards gravity, xp(t) and v
p
y (t) are the particle

position and particle vertical velocity. Here uy(xp(t), t) is defined as the fluid vertical
velocity at the position of the particle, and VT is the terminal velocity in a still fluid.

If particles have inertia, they preferentially sample the underlying flow field following
the preferential sweeping mechanism as described by Maxey (1987); as a consequence
〈uy(xp(t), t)〉 differs from the Eulerian mean fluid velocity 〈Uy(t)〉. In the absence of
particle inertia, they sample uniformly the flow field and 〈uy(xp(t), t)〉 = 〈Uy(t)〉.

Similarly as in Maxey (1987), the one-point Eulerian statistics and the one-point
Lagrangian statistics are equal for homogeneous and stationary turbulence. If we rewrite
(3.1) for the case of inertialess particles, we get

〈Vy(t)〉|St=0 = 〈Uy(t)〉 + VT |St=0, (3.2)

where 〈Vy(t)〉 is the mean Eulerian particle vertical velocity and 〈Uy(t)〉 is the Eulerian
mean fluid vertical velocity.

In the limit of zero particle inertia, the particle relaxation time τp tends to zero, and
therefore VT (which can be computed as VT = gτp) also tends to zero. Consequently, in
the zero-inertia limit and for very dilute conditions, particles should behave as tracers and
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Settling of inertial particles

follow the fluid streamlines. Assuming that the air flow has no mean motion in the vertical
direction in the centreline, the mean corrected vertical particle velocity 〈V〉D − Vβ should
tend to zero for small diameters.

However, experimental data shown in figure 3 present an offset velocity when
the diameter tends to zero. This offset velocity for very small particles was already
encountered in this facility (Sumbekova 2016; Mora et al. 2021) and suggests a vertical
component due to secondary motion in the air in the wind tunnel, 〈Uy(t)〉 /= 0. A mean gas
velocity in the vertical direction could be due to two different physical phenomena. First,
as discussed previously, confinement effects (that would be different for each type of the
grid) can be responsible for secondary recirculation motion inside the tunnel. Second, the
injection of droplets could modify the background flow, since falling droplets may entrain
gas in their fall. Even if the volume fraction is low enough for the particles to not affect the
global turbulence statistics, the dispersed phase can exert a significant back reaction on the
fluid in their vicinity (two way coupling effect) (Monchaux & Dejoan 2017; Tom, Carbone
& Bragg 2022). Entrainment in the wake of falling particles might induce a downward
mean gas flow, with a velocity that should be proportional to the dispersed-phase volume
fraction (Alipchenkov & Zaichik 2009; Sumbekova 2016). To compensate the downward
gas secondary motion near the centreline of the wind tunnel, an upwards flow in the gas
near the walls should be present (and vice versa for upwards gas velocity at the centreline).

Other studies have encountered similar difficulties due to recirculating secondary
motions when measuring particle settling velocity (Wang et al. 2018; Akutina et al. 2020).
Akutina et al. (2020) corrected for this bias by subtracting the local mean fluid velocity
measurements from the instantaneous vertical velocity of the particle (available in the
point-particle simulations).

We estimated the existence and strength of recirculating secondary motion in the wind
tunnel by taking PDPA measurements in the centre and close to the wall of the wind
tunnel. We quantified the carrier-phase vertical velocity using the mean settling velocity
of the smallest particles with enough statistical convergence. This parameter is referred to
as Vphysical. Figure 4 shows Vphysical, measured in the centre (figure 4a) and near the wind
tunnel wall (figure 4b).

Figure 4 shows downward motion (Vphysical > 0) at the centre and upward motion
(Vphysical < 0) near the wind tunnel sidewall, in most cases. A different behaviour is
observed for the OG (star symbols), with opposite direction of secondary motion, for some
volume fractions.

Two possible causes of a mean vertical flow were explained above: confinement effects
and the fluid dragging effect of the particles. With Cobra probe measurements, we
observed that, even in the absence of particles recirculating currents arise in the carrier
phase. Regarding the fluid dragging effect, there are evidences of the particle back-reaction
on the fluid in our measurements since larger values of Vphysical are observed in the
presence of particles than in the measurements without particles. One would expect
that the fluid-dragging contribution to Vphysical would increase with volume fraction
(Alipchenkov & Zaichik 2009; Sumbekova 2016); however, there is no clear trend observed
for Vphysical with volume fraction. This lack of volume fraction influence on Vphysical can be
explained by the limited range investigated. In short, the first-order contribution to Vphysical
seems to be caused by confinement effects whereas a second minor contribution is due to
the fluid dragging effect of the particles.

It is worth noticing that the Stokes number could have an influence on Vphysical as the
entrainment of the carrier flow by the dispersed phase is connected to the particle inertia.
We would then expect Vphysical to increase with the average Stokes number of the particles

970 A23-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.579


A. Ferran, N. Machicoane, A. Aliseda and M. Obligado

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2
V ph

ys
ic

al
 (

m
 s

–
1
)

Centre Near wall

Two phase flow:

AG 2.6 0.5
AG 2.6 1.0
AG 2.6 2.0
AG 4.0 0.5
AG 4.0 1.0
AG 4.0 2.0
AG 5.0 0.5
AG 5.0 1.0
AG 5.0 2.0

OG 2.6 0.5
OG 2.6 1.0
OG 2.6 2.0
OG 4.0 0.5
OG 4.0 1.0
OG 4.0 2.0
OG 5.0 0.5
OG 5.0 1.0
OG 5.0 2.0

RG 2.6 0.5
RG 2.6 1.0
RG 2.6 2.0
RG 4.0 1.0
RG 4.0 0.5
RG 4.0 2.0
RG 5.0 0.5
RG 5.0 1.0
RG 5.0 2.0

Single phase flow:
Active grid Open grid Regular grid

U∞ (m s−1) U∞ (m s−1)

105φv
U∞ (m s−1)Grid 105φv

U∞ (m s−1)Grid 105φv
U∞ (m s−1)Grid

(b)(a)

Figure 4. Average settling velocity of the particles for the smallest diameter class (a) at the centre, and (b) near
the wall of the wind tunnel. The different symbols represent the RG (�), AG (•) and OG (�). The size of the
symbols is proportional to the volume fraction and a darker colour corresponds to a higher mean velocity.
Carrier-phase vertical velocity measurements with the Cobra probe are presented at the two locations with
coloured lines. Similar to figure 3, AG, OG and RG are in solid line, dashed line and dash–dotted line,
respectively.

in the flow. In the present experiments, however, the particle size distribution is fixed
due to the atomisation system. The value of Vphysical, which is the best estimation of the
vertical velocity of the carrier flow, results from the interaction of the entire range of
diameters (i.e. St ∈ [0, 14]) with the turbulent gas flow. Thus, Vphysical cannot be computed
independently for different particle Stokes numbers. It would then be expected that, in an
experiment with different polydispersity, the value of Vphysical would change because of
the different Stokes numbers. While our current experimental set-up does not allow for
polydispersity variations, further studies may help to understand the role of St in Vphysical.

We also observed recirculating secondary motions in the single-phase flow measured
with the Cobra probe. Lines in figure 4 show the mean single-phase vertical velocity
for the three turbulence conditions, against the mean streamwise velocity. Measurements
with the Cobra probe provide evidence that there are weak secondary flows in the wind
tunnel, even in the absence of particles. Moreover, these secondary flows are dependent on
the turbulence generation mechanism, as the OG (dashed line) causes an opposite sense
of motion than the AGs or RGs. Surprisingly, single-phase measurements confirm the
same trends as the particle velocity measurements. At the most dilute case (i.e. for the
lowest volume fraction, the vertical velocity of the secondary motion is the same order of
magnitude in the single- and two-phase flows: 0.1 m s−1).

In figure 4, each point corresponds to a single realisation of the experiment, where some
realisations are repetitions of the same experimental conditions. We observe low but not
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Settling of inertial particles

insignificant dispersion between the different realisations of the single condition. However,
the trend that we discuss is still robust: the sign of Vphysical does not change for the different
realisations of the same conditions, although the magnitude does change.

To conclude, measurements in both laden and unladen flows show the existence of
downward motion in the centre and upward motion near the sidewalls (with the AG
and RG, with the opposite sense of motion for the OG). To the best of the authors’
knowledge, this constitutes the first experimental evidence of the existence of Vphysical as a
quantification of the carrier-phase vertical velocity in wind tunnel experiments. From now
on, Vphysical and Vβ are subtracted from the measurements of vertical velocity, 〈V〉dp −
Vβ − Vphysical, to quantify settling velocity enhancement and/or hindering (corrected from
these two experimental biases).

3.3. Influence of the carrier flow turbulent Reynolds number on the particle settling
velocity

To quantify modifications of the settling velocity, we subtract the particle terminal speed
in a stagnant fluid VT from the vertical velocity. We define this difference as �V , where
positive values imply settling velocity enhancement and negative correspond to hindering.
The value of VT is estimated using the Schiller–Naumann empirical formula for the
particle relaxation time τp (Clift et al. 1978):

VT = τpg with τp = ρpd2
p

18μf (1 + 0.15Re0.687
p )

, (3.3)

where μf is the carrier flow dynamic viscosity, g the gravitational acceleration, dp the
particle diameter, ρp = 900 kg m−3 the oil droplet density and Rep = VTdp/ν the particle
Reynolds number.

Here �V is usually normalised by the r.m.s. of the carrier-phase fluctuations, u′, or
by the particle terminal velocity, VT . Normalising �V by u′ was first proposed by Wang
& Maxey (1993), and Yang & Lei (1998) confirmed u′ is a better velocity scale than uη

to express the settling velocity enhancement. It has been widely used in other studies
(Rosa et al. 2016; Huck et al. 2018). Consequently, �V is normalised by u′, although this
non-dimensionalisation of �V is still under scrutiny.

Figure 5 shows the normalised velocity difference �V/u′ against particle diameter.
All the measurements were taken at the same location, at the centreline of the wind
tunnel. All the curves show the same trend: the settling velocity is enhanced for small
particles, and this enhancement reaches a maximum, max(�V/u′). After the maximum,
the settling velocity enhancement decreases until it reaches a point where it is negative,
that is, particle settling is hindered by turbulence. For very large particles (not attainable
with our injection system), �V/u′ would eventually become zero as they follow ballistic
trajectories, unimpeded by turbulence. A discussion on the mechanisms that control
enhancement and hindering of the settling velocity is available in § 5.

Particle settling velocity tends to depend on the turbulence characteristics, that is, in this
study, it depends on the type of grid used in the experiments. Series taken with the OG
configuration show a higher enhancement for all volumes fractions (green dashed line).
On the contrary, AG turbulence (in blue solid lines) causes mostly hindered settling, with
enhancement present only for a small range of diameters. Finally, measurements taken with
the RG (red dash–dotted lines) show an intermediate behaviour between the two other grid
configurations.
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Figure 5. Particle velocity over the carrier phase fluctuations �V/u′ = (〈V〉dp − Vβ − Vphysical − VT )/u′

against the particle’s diameter dp for a volume fraction of 0.5 × 10−5 (a), 1.0 × 10−5 (b) and 2.0 × 10−5 (c).
The data from the AG are in solid lines, the OG in dashed line and the RG in dash–dotted lines. The error bars
show the estimation of the error in the velocity measurements induced by the determination of the misalignment
angle. A darker colour corresponds to a higher mean velocity U∞.

A combination between the Rouse and Stokes numbers, Ro St, has already been proven
to be an interesting scaling (Ghosh et al. 2005), as it was shown in several studies to
collapse the data better (Good et al. 2014; Petersen et al. 2019; Mora et al. 2021; Yang &
Shy 2021). The Rouse–Stokes number can be expressed as a ratio between a characteristic
length of the particle Lp and a characteristic length of the flow. Here Lp can be seen as
the distance that a particle will travel to adjust its velocity to the surrounding fluid starting
with a velocity VT . Using the Kolmogorov time scale in the Stokes number and u′ in the
Rouse number, the Taylor microscale appears to be the characteristic length scale of the
flow:

Ro St = τp

τη

VT

u′ =
√

15
VTτp

λ
=

√
15

Lp

λ
with Lp = VTτp as λ =

√
15τηu′. (3.4)

In figure 6, we present �V/u′ against the Rouse–Stokes number Ro St. Similar to
figure 5, each panel presents data from a different value of volume fraction.

The Ro St number gives a better collapse of the position of maximum of enhancement
than the Rouse number or Stokes number alone. Figure 6 indicates that enhancement of
the settling velocity reaches a maximum for a Rouse–Stokes number around 0.6, which
is consistent with previous findings. Yang & Shy (2021) reported a maximum for a
Ro St around 0.72–1 in a Taylor–Couette flow, whereas Petersen et al. (2019) presented
a maximum of enhancement for Ro St of order 0.1. Alternative scalings have been tested
on our data, with the results provided for completion in Appendix A. These measurements
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Figure 6. Enhancement of the particle velocity, normalised by the turbulent r.m.s. velocity, �V/u′, against
the Rouse–Stokes number: (a) φ = 0.5 × 10−5; (b) φ = 1.0 × 10−5; and (c) φ = 2.0 × 10−5. Lines follow the
legend of figure 5.

reveal that, for a fixed Reλ, the enhancement increases with volume fraction, consistent
with Aliseda et al. (2002) and Monchaux & Dejoan (2017).

We observe that the enhancement is much stronger for the low values of Reλ (∈ [30–70],
OG and RG) than for the higher Reλ (∈ [260–520], AG) for all volume fractions. As
shown in figure 2(a), the settling enhancement decreases significantly with an increase in
the flow Taylor–Reynolds number, with Taylor–Reynolds number significantly higher for
the AG turbulence than for the two other grids ReλAG � ReλRG > ReλOG. However, we
observe when the Taylor–Reynolds number is varied by increasing the inlet velocity U∞
alone, while keeping the same grid turbulence generation system, the trend is reversed: the
settling enhancement increases with an increase in Reλ within the small range achieved
with each grid, and keeping a quasiconstant large-to-small scales ratio. Thus, settling
enhancement depends strongly on the characteristics of the turbulence, as reported in
Mora et al. (2021). While the study of Mora et al. (2021) obtained the same trend by
comparing with data from the literature, in this study the entire range of Reynolds number
and turbulent length scales were explored in the same facility.

This would suggest that the maximum of enhancement has a non-monotonic behaviour
with the turbulent Reynolds number, as reported in Mora et al. (2021). A non-monotonic
dependency of the degree of enhancement with Reynolds number has also been observed
recently in Yang & Shy (2021). This effect of Reλ on the maximum of enhancement
confirms that the settling velocity modification is a multiscale phenomenon and one
turbulent scale is not sufficient to characterise it (Tom & Bragg 2019).
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Figure 7. Enhancement of the particle velocity, normalised by the particle terminal velocity, �V/VT , against
the Rouse–Stokes number: (a) φ = 0.5 × 10−5; (b) φ = 1.0 × 10−5; and (c) φ = 2.0 × 10−5. Lines follow the
legend of figure 5.

Although u′ has been widely used in the literature to normalise �V , it has already been
pointed out that there is no consensus on the scale for settling modification (Tom & Bragg
2019). The influence of the Reynolds number on the settling modification is also affected
by normalising �V with u′. Since the range of flow scales that interact with the particles
depends on the Stokes number, an interesting choice would be to non-dimensionalise �V
with a vertical velocity that depends on St. Similarly to previous studies (Good et al. 2014;
Rosa et al. 2016), a normalisation of the results with the terminal velocity VT = Stgτη

is proposed in figure 7. Figure 7 uses the same legend as figures 5 and 6. Normalising
with VT , the three different sets of curves for the three turbulence generation schemes
are observed to collapse in figure 6. However, looking closely at figure 7, the Reynolds
number dependency of the settling velocity modification is still non-monotonic, even after
normalising with a velocity scale different than u′.

3.4. Variance of the vertical particle velocity
The variance of the vertical particle velocity 〈(v′

y)
2〉 normalised by the Kolmogorov

velocity square is shown in figure 8. In figure 8(a), we observe that the variance increases
with the Reynolds number Reλ. This is expected since the fluid velocity variance increases
with the Reynolds number and so does the particle velocity variance. The normalised
particle velocity variance was also computed for each bin of diameters to have the influence
of the Stokes number and the Rouse number on this metric. Figure 8(b) shows that the
variance decreases slowly with the Rouse–Stokes number. This is consistent with the fact
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Figure 8. Variance of the vertical particle velocity 〈(v′
y)

2〉 normalised by the Kolmogorov velocity square u2
η.

The variance is plotted towards the Reynolds number Reλ in (a) and towards the Stokes number in (b). The
symbols follow the legend of figure 4.

that the filtering by inertial particles becomes more important as inertia increases. Inertial
particles with higher Stokes number are less sensitive to the carrier flow’s high velocity
fluctuations.

3.5. Scaling of the maximum of enhancement
As no theoretical consensus have been found on the settling velocity modification,
empirical scalings are proposed. This study focuses on the value and location of
maximum of enhancement max(�V/u′), and not on the critical Ro St, where enhancement
turns into hindering, as most cases with the passive grid did not reach the transition
enhancement/hindering for high Rouse number, contrary to Mora et al. (2021). As said
in the previous section, the enhancement seems to increase when varying only the
wind tunnel velocity U∞. In order to take this trend into account, a global Reynolds
number is introduced, ReG = MU∞/ν, based on U∞ and M the mesh spacing in
the turbulence-generating grid. Several dimensionless parameters were tested to scale
max(�V/u′): the global Reynolds number ReG, the volume fraction φv , the Taylor-scale
Reynolds number Reλ, a Reynolds number based on the integral length scale, and the Ro
or St numbers corresponding to the maximum of enhancement. The best scaling from the
parameters above was found to be a combination of Reλ, ReG and φv .

Figure 9(a) represents max(�V/u′) against Reα
λφ

β
v Reγ

G, where α, β and γ are best-fit
exponents:

max(�V/u′) ∼ Reα
λφ

β
v Reγ

G, (3.5)

with α = −1.1, β = 0.6 and γ = 0.9. The values of α, β and γ are consistent with
previous observations: the maximum of enhancement increases with inlet velocity and
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Figure 9. Scaling of the settling velocity with Reλ, ReG and φv : (a) max(�V/u′) versus Reα
λφ

β
v Reγ

G with the
fitted value of α, β and γ ; (b) max(�V/u′) divided by the scaling versus the Rouse–Stokes number.

volume fraction but decreases with an overall increase of Reλ (when varying the Reynolds
number on the entire range [30, 520]).

Figure 9 shows figure 6(c) with �V/u′ divided by the power law scaling. A gap in data
exists due to the jump in Reynolds number between the AG and the two passive grids (see
figure 2). No measurements were taken for Reλ between 70 and 260, since the present
experimental set-up cannot reach those intermediate values.

Figure 9 shows that no simple scaling of the peak of settling enhancement can be
inferred from this data. The dispersion of the results is partly due to the effect of the
different large-scale turbulence, as discussed in the next section.

4. Influence of large-scale structures

Although the OG and RG create very similar values of turbulent intensity, the settling
speed of inertial particles in these two flows are very different. Indeed, RG data
(dash–dotted lines) is as different from OG data as it is from AG data (see figures 5 and 6).
This discrepancy between RG and OG behaviours can be explained by the difference in
integral length scales between these two turbulent flows (see table 1 and figure 2).

Figure 10 illustrates the settling velocity modification from two series with similar
Reynolds numbers, turbulent intensities and volume fractions, but different integral length
scales La0. The figure is plotted against Ro St but presents a similar trend when made with
Ro or St. It can be seen that the degree of settling enhancement is stronger for a smaller
integral length scale and this behaviour is consistent for different volume fractions and
wind tunnel Reynolds numbers. This suggests that the integral length scale and large-scale
structures play a role in the settling velocity modification. According to the study of Tom
& Bragg (2019), there is a length scale lc(St) above which the effects of particle inertia
are negligible and only the flow scales smaller than lc contribute to the settling velocity
enhancement. Here lc has been proposed to be an increasing function of the Stokes number,
thus, as St increases, the range of flow scales impacting the settling velocity becomes
larger. Consequently, we would expect the integral length scale to play a role on �V/u′
only when the Stokes number is above St(lc). With our experiments, we provide the first
evidence of settling velocity modification by turbulence where the integral length scale
is the only difference between two turbulent datasets, in figure 10. According to the lc
hypothesis, one would expect the curves from the RG and the OG to collapse for the
St < St(lc) data. Figure 10 reveals that the integral length scale has a measurable influence
on the settling velocity modification for almost the entire range of Ro St number studied,
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Figure 10. The OG and RG data. Settling velocity difference over the carrier-phase fluctuations (�V)/u′

against the Rouse–Stokes number, for a volume fraction of 2.0 × 10−5. Panel (a) displays data taken with
an inlet velocity of 2.7 m s−1, whereas the bulk velocity in (b) is 5.0 m s−1.

and not only for the large Ro St. The data presented in figure 10 shows a collapse for
Ro St < 0.1, suggesting that the integral length scale does not play a role in settling
velocity modification for very small Ro St. This contradicts the hypothesis in Tom & Bragg
(2019), unless lc < L for the smallest particles in the flow. However, Tom & Bragg (2019)
showed that lc(St) is larger than expected and can be larger than the flow integral scale
even for St = O(0.1).

As a consequence of the evidence provided in this paper, the preferential sweeping
mechanism is more accurate at explaining the observations in flows where the large-scale
structures are reduced in size.

5. Mechanisms of the settling velocity modification

5.1. Competition between preferential sweeping and loitering
The different models of the settling velocity modification require the measurement of fluid
variables (flow structure, slip velocity, etc.) that is not possible, at least in an instantaneous
manner, in large Reynolds number two-phase flows. Nevertheless, qualitative comparison
of our experimental data with theoretical models for the proposed mechanisms shows good
agreement. The enhancement of the settling velocity for small Stokes number, i.e. small
diameter, particles found in our experiments is consistent with the preferential sweeping
mechanism (Maxey 1987). The hindering for large Stokes number found at high Reynolds
numbers, on the other hand, is consistent with the loitering mechanism proposed by
Nielsen (1993). The mechanisms and the parameters that control the transition between
enhancement and hindering, for which this manuscript provides novel data at turbulent
Reynolds numbers and length scales not studied before, remain poorly understood and
needs theoretical analysis.

Indeed, the Ro, St or Ro St critic that set the transition between enhancement and
hindering have a non-monotonic dependence with the Reynolds number. No simple scaling
of the Stokes or Rouse critic could be found from other non-dimensional parameters
(i.e. volume fraction, global Reynolds number or Taylor-based Reynolds). However, the
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fact that the maximum of enhancement collapses for Ro St ≈ 0.6–1.0 gives a threshold
for which the loitering effect starts to balance out the preferential sweeping mechanism
(although enhancement remains the main outcome).

As mentioned before, the Ro St number can be expressed as the ratio between Lp and λ,
where Lp is the distance that a particle will travel to adjust its velocity to the surrounding
fluid starting with a velocity VT . Furthermore, the Taylor microscale can be seen as the
separation between two large-scale eddies (Mazellier & Vassilicos 2008). When Lp starts
to be larger than λ the preferential sweeping mechanism becomes less and less important
since particles take a longer time and distance to respond to the fluid. As particles are less
often swept in the downward side of eddies with an increase in Lp they cross both upward
and downward regions of the flow which result in a more frequent loitering. Consistently,
figure 10 shows that the preferential sweeping mechanism is more effective when the
flow’s large-scale structures are smaller.

5.2. Collective effects
Numerous studies have shown an increase in the particle settling velocity with the
particle local concentration (Aliseda et al. 2002; Monchaux & Dejoan 2017; Huck et al.
2018). An estimate of the particle local concentration can be obtained with the use
of Voronoï tessellations (Monchaux, Bourgoin & Cartellier 2010). In this study, only
one-dimensional statistics of a 3-D flow are collected with the PDPA. For such signals,
special attention is required as the analysis of preferential concentration via Voronoï
tessellations has shown to present some bias (Mora et al. 2019a). A Voronoï cell is defined
as the portion of the temporal signal closer to one particle than to any other ones. The
inverse of the Voronoï cell length L gives an indication of the particle local concentration
C = 1/L. Preferential concentration is observed when small and large Voronoï cells are
over represented compared with a random Poisson process (RPP). In other words, the
probability distribution function (PDF) of the normalised Voronoï cell length V = L/〈L〉
crosses the PDF of a RPP twice. Before the first crossing, small Voronoï cells are over
represented showing the presence of over populated regions, or clusters. Similarly, after the
second crossing large Voronoï cells are more probable than for a RPP showing the presence
of depleted regions (i.e. voids). Clusters and voids are defined as a group of connected cells
with cell length smaller than the first, respectively larger than the second, crossing with
the PDF of a RPP. According to Mora et al. (2019a), clustering can be present and not
be detected by the use of one-dimensional Voronoï tessellations. However, if the standard
deviation of the normalised cell length σν is larger than for a RPP distribution σν > σRPP,
it is a reliable evidence of the presence of preferential concentration. For the next, we will
only consider cases for which σν/σRPP > 1.2 to avoid time series that present a lack of
information.

Figure 11(c) shows the conditional particle velocity on the local concentration compared
with the average settling velocity over all particles 〈vy(t)〉 versus the normalised
concentration C/C0 = 1/V . In agreement with previous studies (Huck et al. 2018), the
settling velocity is constant or increased with the particle local concentration.

The mean settling velocity for particles in clusters and particles in voids are shown
in figures 11(a) and 11(b). For low Reynolds number, the settling velocity for particles
in clusters is, for most cases, larger than the global settling while particles in voids settle
slower than the unconditional average. Figure 11 shows that the particle local concentration
and collective effects have an influence on the settling rate in our dataset as previously
observed in Aliseda et al. (2002), Huck et al. (2018) and Petersen et al. (2019).
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Figure 11. Mean settling velocity of particles in clusters 〈vy〉clusters (a) and particles in voids 〈vy〉voids
(b) normalised by the unconditional average 〈vy〉. Panel (c) shows the settling velocity conditioned on the
particle local concentration 〈vy〉|C/C0 normalised by the r.m.s. of the carrier phase fluid fluctuations. Symbols
and lines follow the legend of figure 4.

5.3. Sweep-stick mechanism
The sweep-stick mechanism proposed by Chen, Goto & Vassilicos (2006), Goto &
Vassilicos (2008) and Coleman & Vassilicos (2009) states that there is a strong correlation
between the carrier flow zero-acceleration points and inertial particle positions. This
mechanism was first proposed to explain the preferential concentration of inertial
particles for direct numerical simulation data with zero gravity. The modified sweep-stick
mechanism (Falkinhoff et al. 2020) suggests that, in the presence of gravity, particles
stick to low, but non-zero, acceleration points. Zero-acceleration points were shown to
have an average lifetime of τL with τL = L/u′ the flow integral time scale (Coleman &
Vassilicos 2009). This mechanism is restricted to cases where the particle relaxation time
is much smaller than the zero acceleration points life-time, that is to say when τp � τL or
StL = τp/τL � 1 and for St > 1.

The average acceleration of the fluid at the particle’s position can be estimated from the
ensemble average of the Maxey–Riley equation,

〈vp
y (t)〉
VT

= 〈uy(xp(t), t)〉
VT

+ 1. (5.1)

Similarly as in Falkinhoff et al. (2020), we use the approximation that 〈ay(xp(t), t)〉 ∼
〈uy(xp(t), t)〉/τL with ay(xp(t), t) the fluid acceleration at the particle position. The term
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Figure 12. Average normalised acceleration of the fluid elements 〈ay(xp(t), t)〉/(gSt) following (5.3) as a
function of the corrected settling velocity normalised by the terminal velocity (〈V〉dp − Vβ − Vphysical)/VT .
The black triangles present the data from the study of Falkinhoff et al. (2020). The data from the present study,
taken with the AG and a volume fraction of 0.5 × 10−5, are shown in blue.

〈uy(xp(t), t)〉/VT can be rewritten as 〈ay(xp(t), t)〉/(gStL) with StL = τp/τL, as follows:

〈ay(xp(t), t)〉
gStL

= 〈vp
y (t)〉
VT

− 1. (5.2)

Then with the fact that τL = L/u′ and StL/St = τηu′/L we get

〈ay(xp(t), t)〉
gSt

= (τηu′/L)

( 〈vp
y (t)〉
VT

− 1
)

. (5.3)

To be able to compare with the data from Falkinhoff et al. (2020) for which the vertical
axes is directed in the opposite direction, we plot the quantity (τηu′/L)(1 − 〈vp

y (t)〉/VT)

in figure 12. This quantity is positive when there is hindering (〈vp
y (t)〉 < VT ) and negative

in the case of enhancement (〈vp
y (t)〉 > VT ).

Figure 12 presents the estimation of the normalised fluid acceleration at the particles’
position for the AG data. The data from the direct numerical simulation of Falkinhoff et al.
(2020), also shown in figure 12, correspond to a turbulent flow Reynolds number of Reλ ≈
300, various Stokes numbers and Froude number (St = 1, 3, 6, 8, 9), and Froude numbers
(Fr = (ε3/ν)1/41/g = 0.15, 0.23, 0.45, 1.36). As for the experimental data where the
fluid velocity at the particle position is not accessible, we can only compare the value
of the acceleration of the fluid elements between the experiments and the simulation. To
better compare with the numerical simulation, only samples taken with the AG and with a
St number close to 1, 3, 6, 8, 9 are presented in figure 12. There is a reasonable agreement in
the value of 〈ay(xp(t), t)〉/(gStL) between both studies. The slope of the data is controlled
by the value of τηu′/L, and thus depends only upon the flow characteristics. Discrepancies
can be found between the values from the numerical simulation and the experiment since
the Froude number and the flow integral length scale are different.
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6. Conclusion

The settling velocity of sub-Kolmogorov inertial particles in wind tunnel decaying
turbulence is presented and analysed. Accurate settling velocity measurements were
carefully collected and calibrated, by correcting different experimental sources of potential
bias. First, a correction for the PDPA misalignment angle is computed and applied.
Second, secondary flows in the wind tunnel test section were characterised, Vphysical, for
both single-phase and two-phase flows. High resolution in the vertical velocity, compared
with Mora et al. (2021), was obtained thanks to a new PDPA set-up. This, together with
the detailed measurements of alignment and secondary motions, created a more accurate
dataset of settling velocity for small Stokes number particles.

The results in this study confirm and extend the trends observed previously (among
others by Wang & Maxey (1993), Aliseda et al. (2002), Good et al. (2014) and Mora et al.
(2021)). Specifically, the settling velocity enhancement, that has been observed under a
wide range of conditions, disappears with an increase of global (wind tunnel) Reynolds
number, and turns to hindering at high Reynolds numbers Reλ > 260. This dependence
with Reynolds number is in contradiction with most numerical studies (Bec et al. 2014;
Rosa et al. 2016; Tom & Bragg 2019). However, for a smaller range of Reynolds numbers,
the maximum of enhancement is proportional to the inlet velocity U∞, and therefore to
the global Reynolds number. A new phenomenological scaling considering the influence
of the bulk velocity has been proposed.

The range of volume fractions investigated is limited, and precludes the influence of this
variable on settling enhancement from appearing. Different turbulence generation schemes
allow for flows with different integral and Taylor length scales, at the same turbulent
intensities and Reynolds numbers. We show that even if the Reynolds number and the
turbulent intensity are similar, significant differences in the settling modification remain,
due to widely different integral length scales. This suggests an important role of the large
flow structures on the settling velocity modification.

The settling rate modification observed in this study is due to the intervention of
several mechanisms, including at least preferential sweeping, loitering and sweep-stick
mechanisms, operating on different ranges of Stokes and Rouse numbers. In addition to
the aforementioned mechanisms, our results show that collective effects might take a part
in the settling velocity modification.
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Appendix A. Additional scalings

Particle settling velocity is often presented against the Stokes number (Wang & Maxey
1993; Yang & Lei 1998; Aliseda et al. 2002; Good et al. 2014; Rosa et al. 2016; Petersen
et al. 2019; Yang & Shy 2021), the Rouse number (Good et al. 2012, 2014; Mora et al.
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Figure 13. Particle velocity over the carrier phase fluctuations �V/u′ against the Stokes number (a), Rouse
number (b) and the Rouse number based on the Kolmogorov scale (c) for a volume fraction of 2.0 × 10−5. Line
styles follow the caption of figure 5.

2021) and a Rouse number based on the Kolmogorov scale VT/uη (Good et al. 2014).
Figure 13 shows the present data against these three different parameters.

Appendix B. Stationarity of the temporal signal and PDF of particles’ velocities

In this section we show the raw velocity obtained with the PDPA. The temporal signals
are stationary (see figure 14). In this figure, one portion of the time signals is presented for
each of the three grids using a volume fraction of φv = 1.0 × 10−5 and an inlet velocity of
U∞ ≈ 4.0 m s−1. Figure 14(a) corresponds to the streamwise velocity whereas figure 14(b)
represents the vertical velocity.

It can also be observed that all inertial particles horizontal and vertical velocities have
a Gaussian distribution (see figure 15). The skewness (μ3/μ

3/2
2 ) and the kurtosis (μ4/μ

2
2)

have been computed for each velocity distribution (with μn the nth central moment). The
average values over all these experiments for both of these moments are

μ3

μ
3/2
2

(Vx) = −0.12,
μ4

μ2
2
(Vx) = 3.00,

μ3

μ
3/2
2

(Vy) = 0.08 and
μ4

μ2
2
(Vy) = 3.17.

(B1a–d)

In figure 16 the skewness and the kurtosis for each velocity PDF is shown against the
mean streamwise velocity U∞. Since the skewness always falls between −0.5 and 0.5,
the velocity distributions are considered symmetrical. The values of the flatness are also
relatively close to 3, the value of the Gaussian distribution.

970 A23-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.579


Settling of inertial particles

0 100 200 300 400 500 600 700

t (s)

1

2

3

4

5

6

V x(
t) 

(m
s–

1
)

0 100 200 300 400 500 600 700

t (s)

–3

–2

–1

0

1

2

V y(
t) 

(m
s–

1
)

Active grid Open grid Regular grid

(a) (b)

Figure 14. Temporal signals of the streamwise (a) and the vertical velocity (b). One example of temporal PDPA
signal is shown for each of the three grids: AG in blue; OG in green; and RG in brown. The measurements were
taken for a volume fraction of φv = 1.0 × 10−5 and an inlet velocity U∞ ≈ 4.0 m s−1.
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Figure 15. The PDF of the streamwise (a,c,e) and vertical (b,d, f ) velocity for each type of grid: AG (a,b);
OG (c,d); and RG (e, f ).

Appendix C. Determination of the PDPA misalignment angle

A small deviation angle between the PDPA axes and the wind tunnel axes is always present
even if the best precautions were taken during the set up of the device. The deviation angle
has a negligible impact on the horizontal velocity but can induce a significant bias on the
measurements of the settling velocity, since the particle’s horizontal velocity component
is much larger than the vertical one.

We call β the angle between the axes of the PDPA and the axes of the wind tunnel.
Here VXPDPA and VYPDPA are, respectively, the streamwise and vertical components of the
velocity measured by the instrument while VXWT and VYWT are the exact particle velocity
components in the wind tunnel coordinate system (see Mora et al. 2021).
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Figure 16. Skewness (a,b) and kurtosis (c,d) of the velocity PDF against the mean streamwise velocity U∞.
Panels (a,c) show the moments for the horizontal velocity whereas (b,d) correspond to the vertical velocity.
The different symbols (�), (•) and (�) represent the RG, AG and OG, respectively. The size of the symbol
is proportional to the volume fraction and darker colours correspond to higher mean velocities. The quantity
given in each panel is the mean value over all the conditions.

By projecting the accurate droplet velocity in the frame of reference of the PDPA we get

−−−→
VYWT =

(
VYPDPA cos(β)︸ ︷︷ ︸

≈VYPDPA

−VXPDPA sin(β)
)

−→y . (C1)

Since the PDPA was set in non-coincident mode, we do not have access to the horizontal
component VXPDPA corresponding to the biased settling velocity. We then approximate
by using the mean of the time series horizontal velocity VXPDPA ≈ 〈U〉 and define the
angle-corrected velocity as follows:

VYWT = VYPDPA − 〈U〉 sin(β)︸ ︷︷ ︸
Vβ

. (C2)

In order to compute the vertical velocity due to the horizontal component projection
Vβ , we estimated the misalignment angle β through measurements of olive oil droplets
settling velocities. We used olive oil to be closer to the limit of very small diameter and
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Figure 17. Here 〈VYPDI〉 against 〈U〉 for the different incoming velocities with olive oil droplets
measurements. A linear fit of the data is shown in dashed line.

very small volume fraction φv . Indeed, olive oil droplets have a much smaller average
diameter, 〈dp〉 ≈ 3 µm, and a less polydispersed size distribution than water droplets.

The settling velocity of olive oil droplets were collected for different free stream
velocities in the absence of a grid in order to have a flow as laminar as possible.
Measurements were taken when the probe volume was situated on the centre, close to the
wall of the wind tunnel and each time the PDPA had to be realigned. The particle speed in
a still fluid is computed from the particle relaxation time τp including the nonlinear drag
from the Schiller–Naumann semiempirical equation (Clift et al. 1978):

VT = τpg with τp = ρpd2
p

18μf (1 + 0.15Re0.687
p )

, (C3)

where μf is the air dynamic viscosity, g the gravitational acceleration, dp the particles’
diameter, the oil droplet density ρp = 900 kg m−3 and Rep = VTdp/ν the particle
Reynolds number. As the diameter of olive oil droplets is extremely small the actual
velocity is supposed to be equal to the Stokes velocity VYWT = VT . We then get from
(C2) that

〈VYPDPA〉 = VT + 〈U〉 sin(β). (C4)

With several free stream velocities and (C4) a least-squares polynomial fit on the values
of 〈VYPDPA〉 and 〈U〉 can be performed to estimate sin(β). Figure 17 shows 〈VYPDPA〉
against 〈U〉 for the probe volume on the centre where a linear fit was done and the slope
gives the value of sin(β). In our case, β is found equal to β = 1.5◦ ± 0.3◦.
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