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The dynamics of towed objects in a fluid environment is of interest for many practical
situations. In this paper we report results for wake instabilities of spheres towed in a
water tank. Six particles of different diameter and/or density ratio have been investigated,
towed at 5 different constant velocities. The explored density ratios lay within ΓA
½1:06;2:56�, with particle Reynolds numbers RepA ½100;1200�, corresponding to Galileo
numbers in the range GaA ½1300;8000�. We introduce a surrogate Galileo number Gan

that, by taking into account the towing force applied to the particle, allows a comparison
with the case of free falling/ascending spheres. Using innovative 3D tracking techniques,
the three-dimensional trajectory of each particle is reconstructed. The wake instability for
the studied particles is found to be associated to a 3D helicoidal motion with an elliptical
cross section in the plane perpendicular to the towing direction. The 3D oscillatory motion
was found independent of the particle density ratio, with a threshold of the order of
Recp � 355 (or Ganc � 245). This threshold is slightly larger than the one found for the free
falling particles’ transition to 3D chaotic motions (Recp � 310 or Gac � 225).

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics of towed objects in a fluid environment is of interest for many practical situations. In the context of these
applications, it is often of crucial importance to warrant the stability of the trajectory of the towed object (at the tip of the
cable), which turns out to be an interesting and complex fluid dynamics problem. This work studies path instabilities of
solid spheres towed at constant speed. The results obtained from this towed case are compared with the well studied
problem of wake instabilities of free falling/ascending spheres.

The physical causes for the path instability of an arbitrarily shaped body submerged in a viscous fluid can be separated
into two classes. The first class, that applies only to non-spherical bodies, is related to the way the hydrodynamical forces
. Bourgoin).
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Fig. 1. Schematic regimes map in the (Ga, Γ) parameter plane for the free falling/ascending spheres (image based on the results from Jenny et al., 2004;
Uhlmann and Dušek, 2014, simplified for Γo1). The left regime consists in steady vertical motions that transit towards steady oblique trajectories
confined in a plane after the solid line. The dash-dotted line is the second transition (Hopf bifurcation) that yields planar–oblique oscillating paths, while
the dashed line leads to a variety of chaotic motions.
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and torques evolve when a disturbance is applied to the body degrees of freedom. The second class involves the wake
instability that occurs beyond a critical Reynolds number even if the body is translating with constant speed and orientation.
Wake instabilities of the later kind have already been reported by Newton (1999) when studying the drag of spheres falling
in liquids. Over the last 15 years, with the advent of direct numerical simulation (DNS) at higher Reynolds number and high
speed imaging techniques, this problem has received renewed attention (Veldhuis et al., 2009; Clift et al., 2005; Horowitz
and Williamson, 2010; Jenny et al., 2004; Deloze et al., 2012; Uhlmann and Dušek, 2014). A big variety of motions have been
reported for such a system, a review on this subject can be found in Ern et al. (2012) and a detailed historical review in
Horowitz and Williamson (2010).

Three basic parameters can be considered for studying free falling/ascending spheres. The first one is the particle
Reynolds number Rep (defined as Rep ¼ΦUs=ν, where Us is the relative velocity between the fluid and the sphere, Φ its

diameter and ν the kinematic viscosity of the flow). The second one is the density ratio Γ ¼ ρp=ρ0, where ρp and ρ0 are the

particle and fluid densities respectively. And the third one is the Galileo number, defined as Ga¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gΦ3ρ0ðρp�ρ0Þ=μ2

q
,

where g is the gravity acceleration modulus and μ the fluid dynamic viscosity. Dimensional analysis shows that the system is
governed by only two parameters. In this work, we will consider two different sets of parameters to study the stability of the
spheres: Rep and Γ according to Ern et al. (2012), and Ga and Γ as proposed by Jenny et al. (2004). It is important to remark
that the definition of Ga for a towed case has to be adapted considering the differences between the towed and the free
falling/ascending particle problem (see the discussion about the definition of Ga in Section 2).

The instabilities and thresholds for freely settling/rising spheres are summarized in a schematic regime map (Ga, Γ) in
Fig. 1 and are detailed below. Wake instabilities are caused by two subsequent bifurcations, where the first occurs around a
sphere at Ga1c ¼ 155 (or Re1pc ¼ 212). The second, which depends on the given value of Γ, is a Hopf bifurcation. On average,
this bifurcation has critical values Ga2c ¼ 185 and Re2pc ¼ 257 very close to those of the first bifurcation. For Reynolds numbers
below the first bifurcation, steady vertical motion with full axisymmetry in the horizontal plane is obtained. This bifurcation
leads to a stationary state that is no longer axisymmetric, yielding a regime with steady oblique motion. The second
bifurcation is related to a periodic state, and the magnitude of the lift force associated with this mode oscillates around a
mean value that can be different from zero. The resulting regime is therefore made of oscillating oblique paths, with low-
frequency oscillations for 1oΓo2:5 and high-frequency oscillations for higher values of Γ. Spheres in this range of Ga,
with a density ratio lower than unity (i.e. ascending spheres), are reported to be in a ‘zig-zagging’ state (planar periodic
oscillations). Transition to chaos occurs around Ga3c � 225 or Re3pc � 310, when the wake of the sphere becomes fully three-
dimensional, leading to many different regimes with important qualitative differences. Generally speaking, states with high
Ga and low density ratio (close to the ‘zig-zagging’ regime) are highly intermittent, while for larger density ratios much less
ordered states are observed.

In the present paper we study a particle towed at a constant speed vT that is orders of magnitude lower than its settling
velocity. It is therefore an intermediate case between the fixed sphere and the free falling/ascending case and it remains
unclear whether results of free case can be applied. While in the free falling/ascending case the settling velocity is indirectly
controlled by Γ and Ga, in our case this velocity can be prescribed independently. This is a new scenario in which these two
parameters can be combined in new ways, never explored systematically before. Nevertheless, as has been pointed out in
Ern et al. (2012) for the case of a sphere, the wake instability is the only candidate to generate oscillations. Therefore, some
analogue instabilities should appear in the towed case. Yet, it is not evident how the tension of the towing cable would affect
this motion.



Fig. 2. Schematic of the experimental setup. The dashed line shows the wire (solid line) behind the tank. The light colors depict the particle's and wire's
shadow and the arrows show the towing direction. The subscripts S, P and LS stand for shadow, particle and light source, respectively. The inset is a raw
image taken with the camera, where one can clearly observe the particle and its shadow. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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The purpose of this work is to study such a towed system and to try to identify the critical values of Repc, Γc and Gac. Any
differences with the free falling/ascending situation would be essential for the cited applications. We therefore investigate
the stability of the trajectory of different classes of particles, with various density ratios and Reynolds numbers. The
experimental system used to tow spheres at constant speed and the particles characteristics is described in Section 2.
We evidence that trajectories can be unstable under certain conditions, the instability yielding to 3D oscillations (Section 3).
We characterize the destabilization of this system as a function of the particle's Reynolds number in Section 4. In Section 5
we discuss the observed instability in regard to wake instabilities of free falling spheres. We finally summarize the main
results of this work in Section 6.
2. Experimental setup

2.1. Towing system and tracking

The experiment has been performed in a water tank (Fig. 2), with a rectangular cross-section of dimensions 50�35 cm2

(in the x0z plane) and a height of 133 cm (along the y coordinate). More detailed information about the experimental setup
can be found in Kühn (2007) and Westrich and Förstner (2005). A platform that moves vertically along a rail is located in
front of the tank, facing the particle. As can be appreciated in Fig. 2, the towing cable is arranged in such a way that the
particle and the platform displacement are exactly the same, setting the platform in the particle reference frame. The length
of the cable between the highest position and the initial position of the particle (the part of the cable that affects the motion
of the sphere) is of 1.1 m, with 3.5 cm of the cable out of the water (see next section for details of the cable). The starting and
ending positions are well away from the upper and lower tank boundaries to avoid any perturbation, yielding a total
displacement of 75 cm and a wire length of 35 cm at the end of the experiment. A light source and a camera are fixed to the
platform. This allows us to record the particle at a fixed height for all displacements, making it possible to record much
longer trajectories compared with the free falling case (of the order of 1 min). Five different towing velocities vT in the range
1ovT o3 cm=s with increments of 0.5 cm/s have been investigated for each class of sphere (see below). The use of the
translation stage assures a constant towing velocity throughout the motion.

A white panel is placed on the back of the tank, in order to be able to track both particle and particle's shadow. In
Section 3.2 we will show that this setup allows us to perform three-dimensional tracking of the spheres with only
one camera.

Particle's trajectories are recorded using a camera with a resolution of 640�380 pixels and an acquisition frequency of
30 Hz. Considering the towing speed and the dimensions of the tank, at least 25 s of trajectory were recorded, resulting in
over 700 frames. In order to have statistical convergence for each class of sphere, 10 movies are recorded for each sample.
The conversion from pixels to length units is made using known printed patrons (masks) which allows us to determine the
projective transformation between pixels and real world units. Two different masks are used: one at the back of the tank to
convert the positions of the particle shadow and the other in the plane x0y (where the origin of coordinates is placed at the
initial position of the sphere) for the particle's positions. Then, both the particle's and its shadow trajectories are obtained
using standard 2D tracking techniques. Section 3.2 explains how the combined tracking of the particle and its shadow yield
the particle 3D trajectory. As the particle can experience a three-dimensional motion, an approximation is needed. This
approximation consists in applying the same 2D transformation to the particle, regardless of its z position. This is only valid
if the displacement Δz of the particle is small compared to the distance between the sphere and the camera D. As it will be
shown in Section 3.2, the particle displacement in z coordinate is around a few millimeters at most, while the camera is at
50 cm from the sphere, so we effectively verify Δz=D⪡1.



Table 1
Characteristics of the particles considered. The density ratio Γ is calculated considering that ρ0 ¼ 997 kg=m3 for water at 25 1C.

N Type Name Φ ðmmÞ Γ Ga Gan Rep

1 Water-filled W25 25 1.06 3480 ½180–465� ½250–760�
2 Water-filled W39 39 1.08 7780 ½270–700� ½400–1200�
3 Polyamide PA24 24 1.14 4930 ½175–440� ½240–720�
4 Polyamide PA18 18 1.14 3200 ½140–345� ½180–540�
5 Polyamide PA10 10 1.14 1325 ½90–210� ½100–300�
6 Silicon S10 10 2.56 4380 ½90–210� ½100–300�
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The traverse motion tends to add some noise on the center detection through a slight vibration of the system. To recover
the underlying smooth signal, we use a filtering method based on cubic spline interpolations. Note that in our case the
filtering is quite straightforward and non-ambiguous, considering the much higher frequency of the vibrations (above
10 Hz) compared to the main oscillations of the spheres (a fraction of Hertz). In this way, we are able to filter most of the
noise without affecting the actual signal.
2.2. Particles

Six different types of particles are analyzed, exploring a wide range of Ga, Rep (defined as Rep ¼ vTΦ=ν with vT being the

towing velocity) and Γ. The wire used to tow the spheres is a simple cotton fiber, with a diameter of the order of 100 μm,
negligible stiffness and a linear density of less than 30 mg/m. The wire density and mass are orders of magnitude lower than the
spheres. It has been checked that the wire alone does not exhibit any instabilities (i.e. oscillations or transverse displacements).
The properties of the particles can be found in Table 1. The column labelled Gan shows a surrogate Galileo number based on the
wire tension, defined to adapt this parameter to a towed situation instead of a free falling one. We consider that in the most

general case the Galileo number can be written as Ga¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FΦ3=mp

q
=ν, with mp being particle's mass and F the “traction” force;

therefore the Archimedes force, gðmp�m0Þ, withm0 being the mass of displaced fluid for the free falling case. In our situation the
Archimedes force has to be replaced by the wire's tension. In a stable towing situation, the wire's tension is exactly balanced by

the drag force on the sphere: Tz ¼ FD ¼ 1
2ρ0πðΦ=2Þ2v2TCD, obtaining Gan ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FDΦ

3=mp

q
=ν¼ Rep

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3CD=4

p
. The drag coefficient for

static spherical particles is well tabulated (see for instance Clift et al., 2005; Brown and Lawler, 2003), so we have used the
commonly accepted values according to the particle Reynolds number of our particles. It is important to remark that for the
values of Rep studied, CD may have a strong dependency with Rep. Therefore, although Gan is absolutely defined by Rep, each
characteristic number can give a different trend when compared with other parameters.
3. Evidence of an instability

3.1. Particle trajectories

The main objective of this experiment is to study possible instabilities of a sphere submerged in water and towed at
constant speed. Fig. 3 shows a representative example trajectory for each particle considered, at vT¼2 cm/s, in a one-
dimensional representation of one transverse component for a better visualization of the instabilities. This qualitative visual
inspection of the trajectories is sufficient to evidence the existence of an instability for towed sphere. For instance, particle
PA10 clearly appears as stable (Fig. 3e). This is further confirmed when the particle is initially perturbed: the rapid
oscillations imposed are damped quickly (Fig. 3f). This proves that possible small variations of the wire length (due for
instance to small elongation of the cotton cable) do not bias the instability diagnosis by excitation of possible instabilities.
Particle PA24 on the contrary is a clear case of instability (Fig. 3c), where without any external perturbation, an oscillating
motion grows spontaneously.

The oscillations observed for unstable towed spheres are qualitatively similar to those evidenced for the free falling
sphere. However, in the latter case, the motion can take place in a plane or in the 3D space. Is the present instability of the
zig-zag (2D) type or is it three-dimensional? In the next subsection, we address this question, gaining access to the 3D
particle trajectories by tracking not only each particle position, but also the one of its shadow.
3.2. 3D trajectories

In this section we introduce a reconstruction of the 3D trajectory of the towed sphere with this simple one-camera setup
that only demands to accurately measure the position of the particle, the one of its shadow and that of the light source. With
only one camera and a light source, but under certain conditions, the shadow projected by an object on a wall can be used to
measure its out-of-plane coordinate. In Voth et al. (2002) such an approach is used to estimate small amplitude bounces of



Fig. 3. Trajectories obtained for all the particles shown in Table 1. For particle PA10 we also show the trajectory of the particle after being initially
perturbed in order to study the robustness of the stability.
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particles near a wall. Here, we propose a new approach allowing us to reconstruct the full 3D trajectories of particles motion
in the bulk of the flow.

Particle and shadow trajectories are easily obtained via standard tracking techniques while light source position has been
obtained indirectly, assuming a virtual point-like source approximation. The light source is virtual because of the refraction
effects of the air–PMMA–water interfaces at the sides of tank's walls. Therefore the point source approximation will only be
valid if the angles explored by the particle (with respect to particle's initial position) are small enough. In a first step the
position of the virtual light source is obtained. As schemed in Fig. 2, we denote the light source position ðxLS; yLS; zLSÞ, the
particle's ðxP ; yP ; zPÞ and its shadow's ðxS; yS; zSÞ. As these three points are aligned, they follow the parametric equation:

xP
yP
zP

0
B@

1
CA¼

xS
yS
zS

0
B@

1
CAþp

xLS�xS
yLS�yS
zLS�zS

0
B@

1
CA: ð1Þ



Fig. 4. (a) Light source position obtained solving equation systems (1) and (2). (b) z coordinate of the particle solving equation system (1) (blue and red).
Black solid line represents the mean value of previous curves. The curves in figures (a) and (b) correspond to the particle PA24 towed at 2 cm/s. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Provided that the only measured coordinates are xP, yP, xS, yS and zS (the shadow is projected onto a plane at constant z), it is
necessary to add more equations to solve the system. For that purpose, it is enough to consider the positions in the instant
t¼0 s, when the sphere is still static and placed in its initial position:

xLS
yLS
zLS

0
B@

1
CA¼

x0S
y0S
z0S

0
B@

1
CAþp1

x0P�x0S
y0P�y0S
z0P�z0S

0
B@

1
CA; ð2Þ

where now the three components of the initial position of the particle and its shadow are known. This system is finally
composed of six equations and six unknowns (zP,p,p1,xLS,yLS and zLS) and should have a unique solution. Yet these three
points are aligned in physical space, but the points obtained by tracking, even assuming sub-pixel accuracy, are not exactly
aligned (taking into account measurement errors). As the system of equations to solve is complex and has many variables,
this results in a very noisy estimation of the z component of the particle.

In order to solve this problem we proceed iteratively. In a first iteration, we focus on deducing only the position of the
light source ðxLS; yLS; zLSÞ. This is made by solving the full problem at each time step and obtaining a robust estimate of the
light source position as the time average of this first solution. Fig. 4(a) shows the position of the light source obtained for
each time step for a typical unstable case. It can be appreciated that a clear mean value emerges from the noise. This value
will be considered as the position of the point-like virtual light source. The diverging deviations from this mean value occur
when the particle returns to its initial position and xp

!� x0p
!

. In this situation, the system composed of Eqs. (1) and (2)
becomes under-constrained. With the light source position and the amplitudes shown in Fig. 3, we verify that the angles
explored by the particles are lower than 11. This is a small enough angle to neglect legitimately the departure from a point-
like source approximation due to refraction in the interfaces. Nevertheless, the approximation of the finite lamp by a point-
like source is needed.

Once the lamp position is known, the system can be decomposed into two linear systems with two equations each, the
first only considering x and z coordinates and the other considering y and z coordinates. Hence, two solutions for the z
component of the particle are obtained as shown in Fig. 4(b). This allows us to verify the consistency of the system, as both
solutions are similar. It also allows us to finally define the z component of the particle as the average of both solutions,
improving the accuracy.

Fig. 5(a) shows the three components of the position of the particle in time domain (in the towed frame), while Fig. 5(b)
shows the resulting particle trajectory in the real space presenting an elliptical spiraling path. The projected trajectory in the
x0z plane (Fig. 5(c)) is in fact an ellipse. The eccentricity of the ellipse tends to decrease with time: the initial motion is
almost planar, and then becomes ellipsoidal, with a trend towards a circular motion if the tank would have been longer.
Consistently, the phase shift in Fig. 5(a) between x and y coordinates exhibits a trend towards quadrature (signature of a
circular motion) as time evolves. This may be interpreted as a possible signature of a transition from 2D zig-zagging to 3D
spiral paths, or an effect linked to the decreasing length of the cable. Further experiments in a taller tank would be required
to be conclusive on the eventual terminal circularity of the motion in x0z plane and the possible influence of the finite
length of the cable.

In Fig. 5(a), one can observe a small change of the vertical coordinate y in the moving frame (about 7 mm to be compared
to the total vertical displacement ymax ¼ 750 mm in the reference frame). As the towing cable is made of cotton fiber, it



Fig. 5. (a) Three Cartesian components of the particle in the moving frame as a function of time (with only a few symbols for visibility). The apparent
important variation of y, due to the wire elasticity, is in fact dwarfed by the maximum real altitude ymax ¼ 750 mm. Three dimensional trajectory of the
particle in the laboratory frame (b) and its projection in the x0z plane (c); the black to gray colormap represents the time evolution.
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suffers a small elongation during the trajectory caused by its elasticity, which produces small variations in the vertical
component of the trajectory. As emphasized before, the stable case quickly damps any perturbation, and the local variations
of the fiber length are very small compared to the magnitude of the oscillation, so we can consider them negligible and non-
affecting the instability diagnosis.

As a partial conclusion, this analysis shows that the trajectory of towed particles can become unstable, being subject to
3D oscillations. What triggers the onset and controls the amplitude of these oscillations will be discussed in Section 4.

To finish this section, it is important to emphasize the simplicity of this 3D tracking method. It is only necessary to
assume a small displacement of the tracked particle (compared to the distance to the camera and the light source) and a
point-like light source. It is always possible to add more cameras that will expand the number of linear equations allowing
us to better determine, in a first step, the position of the light source. In a second step, each camera will provide two
different solutions for 3D particle position (as in Fig. 4b), giving more solutions to average and increase the tracking
precision. In other words, the proposed method can be used in conjunction with usual multi-cameras stereo matching
methods, where the additional information from the shadow images gives further redundancy improving the accuracy of
the particle's 3D positioning. An alternative would be to add more light sources obtaining new shadows to track.

4. Instability characterization

The simple observations of the particle trajectories (Fig. 3) lead us to think that increasing the particle size can trigger
this oscillating instability, but no clear critical diameter can be deduced, as this transition also depends on the towing speed.
For a more quantitative analysis on the influence of vT, ϕ and Γ, we propose to investigate the onset of instability from the
particle's velocity as a signature of the existence of transverse motion. We base our analysis on averaged trajectories and
focus here on the threshold and the amplitude of the instability. In the previous section, we found that the projected
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Fig. 7. (a) Normalized polar velocity vθ=vng for all the studied particles as a function of Rep�Repc . (b) Diagram of instabilities in the (Gan, Γ) parameter plane
for the towed particles in this experiment with the adapted parameter Gan. The filled symbols stand for stable regimes and the empty ones for unstable
cases. The lines represent the threshold for different instabilities for free falling/ascending spheres. The solid line shows the threshold of the first instability
and the dashed-dotted and dashed lines represent the Hopf bifurcation (at lower Ga) and the transition to chaos (at higher Ga) respectively. For both
figures, the orange cross is a numerical point obtained in Uhlmann and Dušek (2014) for a free-falling sphere with a classical Galileo number Ga¼250 and
Γ ¼ 1:5. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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trajectories in the x0z plane are elliptical. As the direction of each ellipse semi-axis is random in space for each
measurement, the trajectory averaged over a large number of measurements will converge to a circle. Therefore, the rms
velocity of the one-dimensional trajectories x(t) represents, after averaging over 10 trajectories, the averaged velocity
component in the polar direction in the x0z plane. The velocity amplitude vθ obtained is then the characteristic velocity of
the whole trajectories and describes not only the presence but also the magnitude of the instability. For the case of a stable
trajectory (hence almost linear), we have checked that the rms value is equal to the measurement noise (which we estimate
of the order of 10�4 m/s), while for oscillating cases, this value is linked to the amplitude and frequency of the oscillation.
Therefore, before we estimate the average velocity vθ for each of the investigated configurations, we arbitrarily set to 0 any
velocity events lower than the measurement error coming from the particle center detection. Fig. 6(a) shows the velocity vθ,
as a function of the towing speed for the different particles tested, without any normalization. One can observe different
trends for the set of particle parameters and towing speed investigated: some trajectories are always unstable or always
stable independent of vT, while the trajectory of some particles become unstable when increasing vT. The corresponding
critical towing speed seems therefore to depend on the particle characteristics.

As explained in the Introduction, one of the natural relevant parameters for this study is the particle Reynolds number
Rep. Taking into account the particle diameter, but ignoring its density ratio, we find that this Reynolds number is the good
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parameter for this instability, as can be observed in Fig. 6(b): the polar velocity is null for small Reynolds number, then starts
to increase after a critical value ðRecp � 355Þ, and seems to saturate for the highest Reynolds numbers.

The instabilities seem to follow a universal law for vθ, independent of Γ, close to the simple relation vθ ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rep�Repc

p
,

with Repc ¼ 355 and A¼0.1 mm/s a constant velocity amplitude. It is remarkable to note that vθ scaling with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rep�Repc

p
is

compatible with a classical super-critical instability and a cubic non-linear saturation mechanism (Landau and Lifshitz,
1987), associated to the invariance in vθ ¼ �vθ transformation (the direction in which the sphere describes the elliptical
spiral motion is not prescribed). In this context, the instability may be modelled by a classical symmetry preserving
instability equation: dvθ=dt ¼ αðRep�RepcÞvθþβv3θ . The cubic term reflects the non-linear saturation mechanisms of the
instability, for which we do not have any particular physical insight at the moment.

It is particularly surprising that the data in Fig. 6(b) collapses so well for the raw (non-normalized) velocity vθ itself.
The good collapse observed using only Rep tends to confirm that a proper Galileo number in a towed system would be

Gan ¼ Rep
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3CDðRepÞ=4

p
(as CD is a function only of Rep, Gan will also be only a function of Rep). We consequently introduce a

surrogate vertical velocity un
g , derived from Gan according to Gan ¼ un

gΦ=ν, yielding un
g ¼ vT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3CD=4

p
. With this normalization

(Fig. 7(a)) the experimental points are more scattered than in Fig. 6(b), but a numerical datum from Uhlmann and Dušek
(2014), corresponding to a free falling sphere in the chaotic regime, is located very close to the experimental data.

Finally, Fig. 7(b) shows the regimes map in the (Gan, Γ) parameter plane obtained with the results from this experiment,
with the free falling/ascending regimes delimited by the numerical studies of Jenny et al. (2004) and Uhlmann and Dušek
(2014). This diagram shows that the instability threshold observed here for the case of towed spheres coincides very closely
to that of the transition towards the full 3D chaotic regime for free falling/ascending spheres ðGa� 225Þ. We can thus
conclude that towed particles have a three-dimensional helicoidal regime consistent with the transition to chaos for free
falling/ascending particles.

5. Discussion

In this paper we studied spheres towed at constant velocity varying their density ratio Γ, their diameter Φ and the
towing speed vT. The threshold for the 3D oscillatory motion was found of the order of Repc � 355 (or Ganc � 245). This is
slightly larger than the threshold found for the free falling particles’ transition to 3D chaotic motions. On the other hand, as
can be seen in Fig. 1, if the usual definition of Ga based on the settling velocity is used (see Table 1), all particles are well into
the chaotic regimes and no stable cases would be expected. Therefore, the definition of the surrogate Galileo number Gan is
appropriate in order to compare the free falling/ascending and the towing cases. Nevertheless, the difference in thresholds
shows that the cable is playing an important role in the dynamics of towed spheres.

It is not clear whether this case can be totally related to the free falling/ascending case. The main difference between
both cases is that the velocity (the towing velocity in our case, the settling velocity for the free falling case) does not depend
on Γ for the towed system. Evidence of this is that the onset of the instabilities for the particles explored can be
characterized with only one parameter (Gan or equivalently Rep) while for the free falling/ascending case the density ratio
has to be considered. Although the thresholds for instability are similar in both cases, only the case of towed spheres
presents a three-dimensional helicoidal instability. This is an important difference with free falling/ascending spheres,
where many different regimes exist, but not this one in particular. This regime is observed only in free falling/ascending
cylinders (Fernandes et al., 2007) and bubbles with oblate spheroidal shapes (Mougin and Magnaudet, 2001). This may be
caused by the influence of the towing cable in the dynamics, affecting the wake of the sphere or generating a coupling of the
unstable motion with a pendular one via a restoring force.

We note that Mittal (1999) finds that for Rep � 355 a fixed sphere experiences transition to chaos. The similarity between
the three thresholds (free falling/ascending, towed and static spheres) certifies the hypothesis that the instabilities observed
in this work are linked to the wake transition behind an object (whether fixed or not).

Despite the clear influence of the cable in the motion of the particle, no other reminiscences of a pendulum have been
found. It is important to remark that the observed frequencies should be time dependent as the length of the cable
decreases and the particle travels upwards. The frequency of such pendulum has been computed and was shown to be
different from those observed for towed spheres but still in the same order of magnitude. It has also been checked that the
observed frequencies are not consistent with those expected from vortex shedding, which present a typical Strouhal number
of 0.2. The measured frequencies would give a Strouhal number of approximately 0.6. Then, these instabilities are very likely
related to similar physical causes than wake instabilities observed for free falling/ascending spheres. Compared with the free
falling/ascending diagram, the trigger of the instability for towed spheres seems to be related to the transition towards the
chaotic, fully three-dimensional wake. It also seems related to a super-critical instability with a cubic non-linear saturation
mechanism. The exact mechanisms for this saturation are less clear: if we consider the elliptical motion of the sphere in the
horizontal plane, a saturation of vθ may imply a balance between the centripetal acceleration, the tension of the cable and a
lift force that the instability develops. Although the tension of the cable and therefore the centripetal acceleration may be
modelled using the mean drag force on the sphere, it is not possible to model the lift force based on our experimental setup.
This lack of information becomes evident in Figs. 6(b) and 7(a). While the raw value of vθ gives a very good collapse, the
normalized velocity vθ=vng gives a worse one but allows us to collapse numerical data from free falling particles. This absence
of a proper normalization shows that even for the simplified system of a towed sphere we are far from having a full
understanding of the wake instability phenomenon. The lift force arising from the instability and the contribution of the
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component of drag force in the x0z plane may play a role in the normalization of vθ. Furthermore, non-trivial effects, as
another onset for instabilities caused by the sphere acting as a stochastic harmonic oscillator (as studied in Bourret et al.,
1973), with the forcing of the three-dimensional wake in the chaotic regime may be considered. Numerical studies would be
then of great importance in order to shed some light on the instabilities of towed spheres.

6. Summary

We conclude this paper with a summary of the main points of our work. In this study we have analyzed the wake
instabilities of a towed sphere in a laminar flow. The main results can be summarized as
�
 A very broad set of experimental points in the parameter space ½Γ;Rep;Gan� has been explored. In total, 30 different cases
have been collected, with density ratios ranging from 1.06 to 2.56, surrogate Galileo numbers Gan from 90 to 700 and
particle Reynolds numbers from 100 to 1200.
�
 An innovative experimental technique is proposed, based on a towing system, that allowed us to control independently
Γ and Rep. This is a significant advantage compared to the free falling/ascending situations where both parameters are
coupled via the terminal velocity. Nevertheless, the introduction of a surrogate Galileo number still allows for
comparison of both cases. A simple but effective three dimensional tracking tool has been developed that only requires
one generic camera and the image of the particle and its shadow. It has allowed us to characterize the instabilities
present for towed spheres as 3D helicoidal paths with an elliptical cross section in the plane perpendicular to the towing
direction.
�
 A threshold for oscillatory motion has been identified of Repc � 355 (or Ganc � 245). Unlike the case of the free falling/
ascending sphere, this threshold is found to be independent of Γ.
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