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A B S T R A C T

The suspension of a heavy sphere by an upward jet is a classical fluid mechanics experiment to demonstrate the
fluid forces acting on an object. In the range of the parameter space where the sphere can be suspended, the
dynamics can either be regular, i.e., with oscillations around an equilibrium position, or chaotic, with extreme
events leading to large deviations from that equilibrium region. The existence and characteristics of suspension
regimes of several heavy spheres in such flow configurations remain open questions. Spheres compete for
the equilibrium position and come very close to each other, resulting in large local particle concentrations
that prevent direct imaging. Relatively high speed X-ray radiography along with the radioSphere analysis
technique is leveraged here to study the time-resolved 3D trajectory of each individual sphere in a vertical jet.
radioSphere is an X-ray analysis method that retrieves the 3D information out of a single 2D radiography
using a priori knowledge of the imaging geometry (E. Andò et al., 2021), which due to the imaging modality
imposes no limitations on the optical properties of the water. The 3D + time kinematics yield the evolution
of the statistics of the position and velocity of the spheres as a function of the number of spheres and for
two jet Reynolds numbers. Drastic changes in behavior occur when many spheres are present, leaving a clear
signature on the temporal dynamics and on the exploration of the flow volume, where spheres can remain
on the bottom of the vessel for long periods of time, resulting in only partial suspension. In addition to the
suspension capacity, the interactions between spheres are explored with statistics of pair separation distances,
which, together, allow for quantitative arguments to introduce suspension regimes of a collection of spheres
in an upward vertical jet.
1. Introduction

The suspension of a sphere by a jet of a fluid lighter than the sphere
is a problem whose study dates back to Reynolds (1870). Despite its
widespread use in fluid mechanics education and outreach (Güemez
et al., 2009; López-Arias, 2012; Swartzwelder et al., 2021), this situa-
tion received fairly little attention. The sphere’s suspension is explained
in terms of the Coandă effect (Wille and Fernholz, 1965), through an
attractive force exerted on the sphere resulting from the deflection
of the jet by the sphere (Vil’gel’mi, 1969). Since the early studies,
experimental and theoretical approaches have been led for upward
vertical and tilted jets with heavy spheres and a vertical downward
jet with light spheres (Feng and Joseph, 1996; Davoust and Jacquin,
2009; López-Arias et al., 2011; Barois et al., 2017), up to recent stud-
ies (Mejia-Alvarez et al., 2021). This work investigates heavy spheres
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suspended in a vertical upward jet, but with several spheres interacting
in the fluid, a situation which has not been explored in the literature
to the best of the authors’ knowledge.

Determining the existence and location of the equilibrium position
of a single sphere in a jet poses an apparently simple and canonical
problem, which is not easily resolved. Already with a vertical jet,
i.e., when the buoyancy force and the drag force are in the same plane
with opposite directions, the flow inhomogeneity around the sphere
prevents the use of readily available drag coefficients (e.g., Schiller–
Naumann model Clift et al., 1978).

Using the empirical knowledge of the incoming flow below the
sphere, Davoust and Jacquin (2009) derived a formulation to predict
the equilibrium position of the sphere in the vertical jet, but failed at
capturing the dynamics when extreme events are present. While it is
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generally accepted that the equilibrium position cannot exist very far
from the jet exit, they classified the existing equilibrium positions in
different regimes. In the first two regimes, the sphere oscillates around
an equilibrium position, with a larger frequency in the horizontal plane
than in the vertical plane, as predicted by McDonald (2000). Both
regimes are distinguished by the size of the sphere compared to the jet’s
width at the sphere equilibrium location. This ratio decreases as the
equilibrium position moves away from the jet exit, e.g., by increasing
the mean jet exit velocity or by changing the sphere-to-fluid density
ratio towards lower values. In the first regime, termed large sphere
behavior, the sphere is larger than the local jet width, while it is
smaller in the second regime, referred to as the regular regime. As
the sphere equilibrium position moves further away and the attractive
force further decreases, extreme events are observed, resulting in large
deviations with respect to the equilibrium point; this regime is termed
‘‘chaotic’’. The decay of the attractive force along the jet axis can be
seen as a decrease in the equilibrium region’s characteristic size. At
large jet velocities, the sphere is hence suspended far from the nozzle
and turbulent fluctuations can easily push the sphere away from the
stable region and create chaotic dynamics. The first motivation of this
work is to study the competition of several spheres for this equilibrium
region, as the number of spheres increases and as the size of this region
decreases, spanning the regular and chaotic regimes of a single sphere.

The current study poses the experimental issue of measuring the
time-resolved 3D dynamics of multiple objects that evolve in close
vicinity. While tracking many thousands of particles in 3D is possi-
ble with modern high-speed cameras and algorithms (e.g., Schanz
et al., 2016), as long as the inter-particle distance remains relatively
small with respect to their apparent diameter and their frame-to-frame
displacement, this is not the case here. When several spheres are
suspended in a turbulent jet, contacts between spheres occur often and
typically involve more than just two spheres. The approach chosen
here is hence to leverage a recently proposed X-ray radiography algo-
rithm, radioSphere (Andò et al., 2021), that retrieves the full 3D
nformation from a single 2D projection under certain assumptions. In
-ray radiography, an X-ray beam is partially attenuated as it passes

hrough a sample and this attenuation is recorded onto a 2D plane.
hile X-ray radiography is often resorted to for the study of multiphase

lows (Heindel, 2011; Aliseda and Heindel, 2021), it is mostly used and
eveloped in solid mechanics and material science, with applications
anging from manufacturing to medicine. In particular, tomography
econstructs the 3D map of the internal structure of complex systems
hrough many 2D projections obtained by X-ray radiography at various
ngles around the sample (e.g., Maire and Withers, 2014; Stock, 2019).
owever, the number of projections needed in this method greatly

imits the acquisition rate; reconstruction the slice radiographies into
single 3D volume is under the assumption of no movement. To

vercome this limitation, radioSphere uses prior knowledge of
the sample (spheres) and imaging geometry to retrieve a 3D particle
position from a single 2D radiograph. In particular, it is suited to
the study of mono-dispersed spheres of known diameter in a typical
laboratory X-ray set-up, in any complex arrangement, and uses the
geometrical magnification resulting in the combination of a divergent
X-ray beam and the relative distance between each sphere and the
detector. The second motivation of this work is to validate and use this
approach in a dynamic particle-laden flow setting, as radioSphere
was so far only validated using synthetic data and a static granular
assembly (Andò et al., 2021).

Section 2 presents the experimental set-up and measurements meth-
ods. The application of radioSphere for the analysis of the radio-
graphs and the characterization of the suspension regimes are detailed
in Section 3. Section 4 reports the dynamics of the suspended spheres
and changes in regime from freely advected spheres to collision-driven
motions. The results are discussed in Section 5, drawing a general
qualitative picture and introducing a framework for the establishment
of suspension regimes of a collection of spheres suspended in a jet. This
2

is followed by a conclusion (Section 6).
2. Experimental methods

2.1. Materials

The experiment aims to study the 4D kinematics of the suspension
of spheres in a turbulent jet inside a cylindrical tank. The choice of
the fluid and the sphere properties is a compromise between their
relative density and the jet velocity. From an imaging point of view,
a material that attenuates more X-rays compared to its surrounding
fluid is needed, so as to be clearly visible in the radiographs. From a
fluid mechanics point of view, the drag force applied from the fluid to
the spheres should be large enough to exceed Archimedes’ force and in
turn suspend the spheres. The best compromise between the above lead
to the selection of 10mm soda lime glass spheres suspended in water,
although compared to Refractive Index Matched Scanning (RIMS) this
is more flexible considering that contrast agents can be used in particles
and there is no need to match refractive indices.

2.2. Experimental set-up

The in-situ acquisition is performed inside the X-ray scanner of
aboratoire 3SR (Grenoble, France), as shown in the schematic set-up
f Fig. 1. A cylindrical PMMA (i.e., low X-ray absorption) tank of 50 cm
n height and 6 cm inner diameter is bolted on top of the rotation table
nd sealed with an O-ring. The top of the tank is left open, while a hole
s drilled at 4∕5 of its height to allow the circulation of water in the
ystem. A 3D-printed piece is placed at the bottom, which has a 4.5mm
ylindrical hole in the middle. This base controls the input velocity,
hile it retains the beads inside the container. It is also slightly tapered,
ith an angle of 6.3◦ to prevent stagnation of spheres at the bottom of

he tank against the cylinder’s wall. This ensures a constant number of
pheres during the entire duration of a given experiment.

A magnetically driven centrifugal pump is used, connected in paral-
el, to produce the water flow. The input velocity is measured through

flowmeter, placed before the tank entrance. Two flow rates are
xamined: 1.7 L∕min and 2.2 L∕min, resulting in jet mean exit velocities
𝑗 = 1.8 and 2.3 m/s and jet Reynolds numbers 𝑅𝑒𝑗 = 𝑈𝑗𝑑𝑗∕𝜈𝑙 = 8950
nd 11,600, with 𝜈𝑙 the kinematic viscosity of water, exploring two
uspension regimes in the case of a single sphere (regular and chaotic,
ee Section 3.2). Note that the maximum number of spheres that can
e suspended at 1.7 L∕min is 12, and this will be the configuration with
he maximum number of spheres tested for both injection rates. Other
xperimental parameters remain fixed, so the results will be presented
n terms of jet Reynolds numbers, but Table 1 provides alternative
imensionless numbers for comparison. In addition, the sphere-to-fluid
ensity ratio is 𝐾 = 𝜌𝑠∕𝜌𝑙 = 2.51 and the sphere-to-jet diameter ratio is
= 𝑑𝑠∕𝑑𝑗 = 2.22. The sphere Reynolds number 𝑅𝑒𝑠 = 𝑈𝑠𝑑𝑠∕𝜈𝑙 = 7010

s based on the sphere diameter 𝑑𝑠 and terminal velocity based on

ree-fall in quiescent water 𝑈𝑠 =
√

4
3
𝑑𝑠𝑔
𝐶𝑑

(𝜌𝑠−𝜌𝑙 )
𝜌𝑙

≃ 0.63 m∕s, where the
drag coefficient 𝐶𝑑 is approximated to be 0.5 and 𝑔 is the gravitational
acceleration.

2.3. Scanning geometry and acquisition parameters

The current and voltage of the X-ray source are set to 500 μA and
150 kV, respectively, while the source operates at a large spot mode.
The beam is strongly hardened with a 2.4mm Cu filter. Radiographic
acquisition is performed at the detector’s highest speed setting, which is
60 Hz, imposing a 4 × 4 binning and an effective pixel size of 0.598mm
on the detector panel. The time resolution limitation unavoidably
causes motion blur artifacts in the acquired radiographic projections,
especially for the highest injection rate. The treatment of the motion
blur is specifically taken into account during the 4D sphere tracking,
as discussed in Section 3.1.

For both input velocities, the source-detector distance is 766.3mm,
with the source-object distance (i.e., center of cylindrical tank) set to
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Fig. 1. (color online) Schematic representation of the set-up inside the X-ray scanner. Note that the system is not rotated and radiographs are acquired only in the orientation
illustrated. Spheres that are at altitudes 𝑧 < 𝑑𝑠 are labeled as grounded, while spheres at higher altitudes are deemed suspended.
Table 1
Suspension regimes explored (see Section 3.2) and their associated non-dimensional
parameters. 𝑅𝑒𝑗 = 𝑈𝑗𝑑𝑗∕𝜈𝑙 is the jet Reynolds number based on the jet diameter 𝑑𝑗 and
the mean exit velocity 𝑈𝑗 . 𝑅𝑒𝑠 = 𝑅𝑒𝑗𝑑𝑗∕ ⟨𝑧⟩ is a lower bound of the sphere Reynolds
number, where the slip velocity is estimated as the fluid velocity at the equilibrium
position of a single sphere ⟨𝑧⟩ through a linear decrease starting at 𝑧 = 0 (ignoring
the potential core). A higher bound is approximated by 𝐷𝑅𝑒𝑗 ≃ 2𝑅𝑒𝑗 which applies
to the at-rest sphere meeting the jet. 𝑉 = 𝑈𝑠∕𝑈𝑗 is the sphere-to-jet velocity ratio,
with 𝑈𝑠 =

√

4𝑑𝑠𝑔(𝜌𝑠 − 𝜌𝑙)∕3𝐶𝑑𝜌𝑙 terminal velocity based on free-fall in quiescent water,
where the drag coefficient 𝐶𝑑 is approximated to be 0.5, and 𝑔 is the gravitational
acceleration. The Froude number, comparing the free-fall timescale of the sphere to
the jet’s timescale is 𝐹𝑟 = 𝑑𝑠𝑈𝑗∕𝑑𝑗𝑈𝑠 = 𝐷∕𝑉 . The fluid is distilled water, at an ambient
temperature of 25 ◦C, with a kinematic viscosity of 𝜈𝑙 = 8.96 10−7 m2 s−1 and density
of 𝜌𝑔 = 1.18 kg m−3. The soda lime glass spheres have a density of 𝜌𝑔 = 2.5 kg m−3.

Regime 𝑈𝑗 (m/s) 𝑅𝑒𝑗 𝑅𝑒𝑠 𝑉 𝐹𝑟

Regular 1.8 8950 2560 0.35 6.30
Chaotic 2.3 11600 1780 0.27 8.16

272.7mm for the lowest and to 400.7mm for the highest. The latter
requires a larger field of view since spheres are suspended at higher dis-
tances from the tank’s bottom. This means that a smaller magnification
level is achieved for this configuration, resulting in smaller variation
in the projected sphere sizes. In particular, for the lowest velocity the
minimum and maximum projected diameters are 49 and 60 px, while
for the highest one they are 31 and 35 px, respectively. These small size
variations are leveraged by the radioSphere technique to position
the spheres in 3D space, as discussed in Section 3.1.

2.4. Test procedure

In the beginning of each test, the tank is filled with water and
a ‘‘flat-field’’ image of the entire system without spheres is acquired
by averaging 100 projections. Spheres are then inserted into the tank,
and with the pumps still off, another set of 100 images is recorded.
This averaged projection with optimal imaging conditions (very long
effective exposure for noise reduction, no motion artifacts) enables a
good first 3D guess of the static spheres’ position, as discussed in the
3

following Section. Pumps are then turned on and 2000 radiographs are
continuously recorded at 60 Hz.

The acquisition encompassed both the transient from static spheres
at rest in the quiescent fluid and the steady state, where the spheres are
suspended in the turbulent jet. The acquisition duration in the steady
state is approximately 17 s. In this experimental configuration, this
means that the very first part of the acquired data corresponds to a
transient, where the jet velocity starts at zero until reaching a constant
value. This transient is removed from the analysis, which focuses on
the steady-state dynamics.

3. Analysis

3.1. Application of the radioSphere technique

A recently developed X-ray radiography-based technique is em-
ployed to reconstruct the 3D position of each sphere: radioSphere
(Andò et al., 2021). It is a two-step approach that enables the 3D
positioning of assemblies of spheres from only a single radiograph.
radioSphere is based on the strong a-priori knowledge of the
particles’ shape (spherical) and size (mono-dispersed), combined with
the imaging geometry. In the tested granular assemblies, naturally,
some spheres are positioned closer to the X-ray source with respect
to the others. Thanks to the geometrical magnification resulting from
the divergent X-ray beam, this means that despite having the same
physical size (mono-dispersed) their projected sizes on the detector
are different. radioSphere leverages these small size variations to
position spheres along each beam ray.

A flowchart of the technique is shown in Fig. 2 for the assembly of
12 stationary spheres at the lower input velocity. First, the recorded
projection is converted into a calibrated path length image (in mm)
through a calibration procedure described in Appendix A. The first
step of radioSphere is based on a set of fast Fourier transform
(FFT) deconvolutions between the measured radiograph and a series
of structuring elements. For a given magnification level, a structuring
element is a full-scale projection of a single disk (same physical size as
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Fig. 2. (color online) Schematic representation of the radioSphere technique. The input projection is transformed into a calibrated path length image, which is then deconvoluted
with a series of structuring elements. The estimated projection is then refined through a residual minimization iterative algorithm. The 𝑥 and 𝑦 axes on insets (c) and (e) correspond
to the frequencies per image length, centered on the middle of the image, which means the axes span from [−𝐿𝑋∕2, 𝐿𝑋∕2−1] and [−𝐿𝑌 ∕2, 𝐿𝑌 ∕2−1], where 𝐿𝑋 and 𝐿𝑌 are the
size of the image, in pixels, in the 𝑥 and 𝑦 directions. Since the recorded images are not on a square detector the rings created in Fourier space are distorted by this aspect ratio.
the tested spheres) centered on the detector panel (see Fig. 2d). The
structuring element can be considered as a template to be matched, or
a shape function (which here only varies in its size) for the Fourier
deconvolution. The position of a sphere along the X-ray beam can
be detected by performing a number of FFT-based deconvolutions for
different magnification levels, which requires a series of structuring
elements of varying projected sizes accounting for positions from closer
to the source to closer to the detector.1 Here, the limits of the examined
zoom positions are directly given by the scanning geometry and the
physical limits of the cylindrical tank. At the end of this first step, a
3D initial guess of the particle centers is obtained which, based on
the scanning geometry, is projected to yield an estimated synthetic
radiograph (see Fig. 2 top right).

The second step consists in refining this initial guess through an
iterative minimization algorithm. The quantity to be minimized is
the pixel-wise squared residual, defined as the difference between the
measured radiograph and the gradually updated synthetic one. More
precisely, the iterative algorithm aims to minimize the current residual
as a linear combination of three synthetic residual fields, which are the
perturbations of the current guess of each sphere in each orthogonal
direction. The convergence criterion is set as the norm of the difference
between the 3D position guess of two successive iterations, which is
set here as 1∕10 of the sphere diameter. Given a good initial guess, the
algorithm converges after a few iterations.

As already mentioned, the minimization step requires an initial
guess of the particles’ positions. A source of initialization can be a 3D
X-ray tomographic scan, which here would have been very impractical
given the flow loop arrangement. Another source of initialization can
be the deconvolution step, or in the case of a time series analysis, the
previous time frame. For the presented experiments, an initial guess
coming from the previous frame is sufficient to achieve a good conver-
gence for the current one. This means that for each tested configuration,
the deconvolution step is only run once, for the initial frame containing
the stationary spheres. This choice is justified by the fact that there is
no motion blur present, but also a higher signal-to-noise ratio (SNR),

1 The structuring element series can be either synthetic (as used here) or
experimental by acquiring a set of radiographs of a single centered sphere
while varying its position along the X-ray beam.
4

since 100 images are averaged to produce the standing frame. For all
the remaining frames the optimization step is directly run, using as an
initial guess the position of the previously converged frame.

The identification of particle positions in subsequent time steps
directly leads to 3D time-resolved particle traces. The measured particle
displacements can be used as additional constraints in the minimization
process to overcome the potential motion blur artifacts caused by the
detector speed limit. For this, a second optimization round is run, where
before calculating the pixel-wise residual, the modeled projection of
each sphere is convoluted with a unique step (or hat) kernel, the size
of which corresponds to the magnitude of the sphere’s displacement,
while its direction corresponds to the one of the displacement vector.
This second run of the optimization accounting for the spheres’ dis-
placements leads to clearly reduced residuals reaching values of 1∕10
of the sphere diameter, as shown in Fig. 3.

The described application and adaption of the radioSphere tech-
nique is its first implementation in a dynamical system. It should be
noted here, that mainly for the highest input velocity, the tracking
procedure required a certain degree of manual verification in its im-
plementation. More specifically, for frames in which some spheres
exhibited large displacement increments, a trial and error approach was
necessary to select the right amount of the applied perturbation around
the sphere’s current position to ensure the convergence of the mini-
mization, and, in turn, a successful tracking. A potential development of
the technique for similar dynamic cases will be to include the velocity
vector directly inside the minimization functional of the pixel-wise
residual, improving the generality and robustness of the method.

Applying radioSphere on the radiograph time-series results in
a 3d trajectory for every individual sphere. The output data, 𝑁𝑠 time-
series of 𝑥, 𝑦, and 𝑧 for each operating condition, is available at https:
//doi.org/10.5281/zenodo.7438422 (Stamati et al., 2022).

3.2. Suspension regimes

A parametric study considered the suspension of spheres in a verti-
cal upward jet with variations of the jet and spheres diameters, mean
jet exit velocity, and exploring two different spheres densities (Davoust
and Jacquin, 2009). They reduced the number of parameters into
a single non-dimensional group, a jet-based Froude number 𝐹𝑗 =
𝑈 ∕

√

𝑔𝑑 (different from the Froude number 𝐹𝑟 defined above, see
𝑗 𝑗

https://doi.org/10.5281/zenodo.7438422
https://doi.org/10.5281/zenodo.7438422
https://doi.org/10.5281/zenodo.7438422
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Fig. 3. (color online) (a) Measured radiography (normalized by the flat-field), (b) calibrated path length image, (c) residual after the first run of optimization, (d) residual after
the second run of optimization accounting for motion blur.
Table 1), varied in the range 100 < 𝐹𝑗 < 500, to establish the following
suspension regimes:

• 120 < 𝐹𝑗 < 175: large sphere behavior,
• 175 < 𝐹𝑗 < 250: regular regime,
• 𝐹𝑗 > 250: chaotic regime.

The trajectory of a single sphere in the considered configuration reveals
a regular regime for 𝑅𝑒𝑗 = 8950 and a chaotic one for 𝑅𝑒𝑗 = 11600
(Fig. 4(a)). While the mean altitudes, respectively

⟨

𝑧∕𝑑𝑗
⟩

= 9 and
15.5, corresponding to ⟨𝑧∕𝑑𝑠⟩ = 4 and 7, are compatible with the ones
reported in Davoust and Jacquin (2009) for these regimes (see Fig. 4
in Davoust and Jacquin, 2009), the regimes occur in a very different
region of the parameter space. Here, the sphere-to-jet density ratio is
𝐾 = 𝜌𝑠∕𝜌𝑙 = 2.51 and diameter ratio is 𝐷 = 𝑑𝑠∕𝑑𝑗 = 2.22, while they
considered 𝐾 = 85 or 700 and 1.5 < 𝐷 < 7, resulting in high jet
Reynolds and Froude numbers. In the current study, 𝐹𝑗 = 5.7 results
in a regular regime, and a value of 7.4 leads to a chaotic regime, well
below the transition values indicated above. Note that a regular regime
is found in a similar region of the parameter space for a downward
jet and light spheres (Barois et al., 2017). This suggests that for small
values of 𝐾, the jet Froude number may not be the most pertinent non-
dimensional group to distinguish transitions among suspension regimes
(or that the transition values have a non-trivial dependency on 𝐾). In
what follows, the jet Reynolds number will be used for simplicity to
distinguish between regular and chaotic regimes, as only two values
are explored here, 𝑅𝑒𝑗 = 8950 and 11600 respectively, and the focus is
on the effect of varying the number of spheres in both cases.

In the regular regime at a jet Reynolds number 𝑅𝑒𝑗 = 8950, the
single sphere remains in the close vicinity of the equilibrium position,
and oscillations are observed. Fig. 4 reports the power spectral densities
(PSD) of the radial 𝑟 and vertical 𝑧 time series. The radial position
is obtained from the two horizontal positions 𝑥 and 𝑦 resulting from
the 3D tracking, through a change from a cartesian (𝑧, 𝑦, 𝑥) to a
cylindrical (𝑧, 𝑟, 𝜃) coordinate system. The PSD of the radial position
shows a broad peak centered around 𝑓𝑟 = 6.75 Hz. The vertical position
spectrum appears as monotonously decreasing, but a small peak can be
visible at 𝑓𝑧 = 2.1 Hz which corresponds to the vertical oscillations.
While a vertical oscillation frequency lower than the horizontal one is
expected, the ratio 𝑓𝑟∕𝑓𝑧 is approximately twice that in the prediction
of McDonald (2000) (3.2 versus 1.4), but smaller than the ratio of about
5 found in Davoust and Jacquin (2009).

For a higher jet Reynolds number value, 𝑅𝑒𝑗 = 11600, the sphere
explores a large region around the equilibrium positions, and at times
exits the stable jet region completely until being entrapped again (see
for instance the left-most part of the trajectory in Fig. 4(a) where the
sphere exited the jet’s core at a high altitude, fell almost vertically,
rebounded, and joined the jet’s axis again). These extreme events are
5

the signature of the chaotic regime and strongly affect the position
power spectral densities. While the vertical PSD may have retained a
small peak around 𝑓𝑧 = 2.2 Hz, the broad large-amplitude peak on the
radial PSD is completely lost. The spectrum shows a plateau at low
frequency, characteristic of fully decorrelated dynamics at long times,
followed by a steep decay at high frequencies. Note that both radial and
vertical spectra contain more energy at high frequencies in the chaotic
regime than in the regular one.

4. Collective suspension dynamics

4.1. Observations and global metrics

The use of radioSphere on the time-resolved X-ray radiography
measurements yields the 3D trajectory for each sphere present in a
given measurement run. Fig. 5(a) presents such trajectories, arbitrarily
color-coded to distinguish different spheres, in the case of 3 spheres
at a jet Reynolds number 𝑅𝑒𝑗 = 11600. The presence of more than one
sphere results in a much broader exploration of the flow volume. While
not directly visible, already with only 3 spheres, the spheres are often
found in close vicinity and even in direct contact, which will be further
discussed in Section 4.2.

As visualizing many concomitant 3D trajectories over long dura-
tions is not straightforward (long meaning tens of oscillation periods
1∕𝑓𝑧 ≃ 0.5 s here), two complementary approaches are proposed. On
the one hand, Fig. 5(b–c) displays a single 2D trajectory from each
measurement run with 1, 3, 6, and 12 spheres being suspended. This
number is later referred to as the number of spheres, noted 𝑁𝑠. In the
example of 𝑁𝑠 = 6, one trajectory out of 6 is selected at random to be
plotted in Fig. 5(b–c), for both jet Reynolds numbers 𝑅𝑒𝑗 = 8950 (b) and
11,600 (c). On the other hand, Fig. 6 only plots the time series of the
vertical position but for every sphere present in a given measurement
run. Note the change of scales between sub-figures of Figs. 5 and 6
when 𝑅𝑒𝑗 is increased. In addition, Fig. 5 uses a cartesian frame of
reference to represent the trajectories.

Fig. 5(b–c), while only showing a subset of the 4D kinematics,
readily allows for observations of the change in dynamics as the number
of spheres 𝑁𝑠 increases at a fixed jet Reynolds number. For 𝑅𝑒𝑗 =
8950, the most apparent change is that extreme events are present as
soon as 𝑁𝑠 ⩾ 3, indicating a transition to a chaotic regime, induced
by the competition for the equilibrium position. For 𝑁𝑠 = 3, while
vertical positions below the equilibrium position (

⟨

𝑧∕𝑑𝑗
⟩

= 9 for a
single sphere) and at larger radial positions (∣ 𝑦 ∣> 𝑑𝑗) are observed,
high altitudes seem easily reached. However, the vertical exploration
happens in a smaller range for 𝑁𝑠 = 6, with the onset of a radial
exploration at moderate altitudes. These changes are even more ap-
parent when 𝑁 = 12, where only half of the previous altitude range
𝑠
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Fig. 4. (color online) (a) 2D projections of the 3D trajectory of a single sphere at a jet Reynolds number of 𝑅𝑒𝑗 = 8950 (◦) and 11,600 (□) respectively (alternatively 𝐹𝑟 = 6.3
nd 8.16). The dark to light colors indicate the trajectory evolution with time, from start to end. (b) Corresponding power spectral densities (PSD) for a cylindrical coordinate
ystem, normalized by the variance (square of the standard deviation 𝑖′, where 𝑖 = 𝑟, 𝑧). For the radial position 𝑟, a broad peak around 𝑓𝑟 = 6.75 Hz is highlighted for the lower

Reynolds number, while a small peak for the vertical position 𝑧 is shown around 𝑓𝑧 = 2.1 Hz.
Fig. 5. (color online) (a) 3D trajectories for 3 spheres at 𝑅𝑒𝑗 = 11600 (𝐹𝑟 = 8.16) over approximately 17 s. Each trajectory is marked by a different color and the endpoint is
symbolized by a marker whose size corresponds to the sphere diameter. 2D projection of a single trajectory for each explored sphere number 𝑁𝑠 condition at 𝑅𝑒𝑗 = 8950 (b) and
11,600 (c) (𝐹𝑟 = 6.3 and 8.16). The vertical axis is adapted as the jet velocity is increased, but the horizontal axes are fixed (extended up to the cylinder walls minus the sphere
adius, so a marker on the axis corresponds to a sphere contacting the wall).
s explored for that trajectory, and a large part of it is spent on the
ylinder’s bottom wall. This change of behavior, with reduced vertical
xploration and increased radial exploration, is also observable for
𝑒𝑗 = 11600. However, the larger jet velocity associated with an already

chaotic dynamic for a single sphere leads to extreme events where high
altitudes (comparable or greater than

⟨

𝑧∕𝑑𝑗
⟩

= 15.5 for a single sphere)
can be reached at times even for conditions with a large number of
spheres.

By focusing on the vertical coordinate, Fig. 6 shows the simultane-
ous dynamics of every sphere present in a given run, and qualitative
comparisons can be made as the number of spheres (rows) and the jet
Reynolds number (column) increase. The maximum altitude reached
by a single sphere (dotted line) is only surpassed by an extreme event
at 𝑁𝑠 = 3 and 𝑅𝑒𝑗 = 8950 resulting from the collision between two
spheres. At this condition, a sphere can still oscillate for a certain
duration around the equilibrium position, but even here it is most
6

often seen to visit its vicinity only shortly before falling back towards
lower altitudes region (if not to the cylinder’s bottom wall). For the
other conditions, with the exception of several extreme events, the
spheres evolve at altitudes found below the average position of a single
sphere (dashed line). While contacts to the ground and rebounds can
be observed for 𝑁𝑠 = 3, they become more and more present for a
larger number of spheres. At the highest number of spheres, 𝑁𝑠 = 12,
many spheres can be found on the ground, but the typical residence
time appears smaller than what is displayed for 3 spheres, especially for
𝑅𝑒𝑗 = 11600 (Fig. 6(e) where spheres can remain close to the cylinder’s
bottom wall for a duration of approximately 1.5∕𝑓𝑧 ≃ 0.7 s).

The observations made on the sphere trajectories are confirmed by
global quantities such as the average positions, with 𝑧 and 𝑦 shown in
Fig. 7. The decrease of the mean altitude with respect to the number
of spheres is apparent at both jet Reynolds numbers. As expected with
the studied geometry, the mean transverse position is approximately
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Fig. 6. (color online) Time series of the vertical position normalized by the jet diameter, 𝑧∕𝑑𝑗 , along the non-dimensional time 𝑡𝑓𝑧, where 𝑓𝑧 = 2.1 Hz is the vertical oscillation
frequency in the regular regime (𝑅𝑒𝑗 = 8950). Each sphere trajectory is represented as the number of spheres 𝑁𝑠 is increased along the row and for both jet Reynolds numbers
onsidered (columns; alternatively 𝐹𝑟 = 6.3 and 8.16). A sphere laying on the base of the cylinder is at 𝑧∕𝑑𝑗 ≃ 1.1 and the dashed and dash-dotted lines respectively represent the
ean and maximum altitude reached in the case of a single sphere suspended in the jet.
c
T

ero independently of the case considered. While ensemble averages are
epresented in solid lines to show the general trend, large deviations
re observed between trajectories of a given experimental run. This
s most obvious for the transverse coordinate, where the maximum
nd minimum among the set of values obtained by a time average of
ach trajectory are growing more and more apart as 𝑁𝑠 increases. This
eans that certain spheres moved within a given region of the flow

olume (e.g., 𝑦 < 0) while others remained further away (e.g., 𝑦 >
). This behavior is not observed for the vertical position, where the
ecreasing trend with an increasing number of spheres is followed by
very sphere. In addition, this trend is independent of the jet velocity,
s seen by the renormalization in Fig. 7(c). The mean altitude is known
o be driven by the drag force exerted by the jet on the sphere, which
cales along 𝐹𝐷 ∼ 𝑈2

𝑗 . The mean altitude rescaled by (𝑈𝑠∕𝑈𝑗 )2 (where
𝑠 is merely introduced to keep the quantity non-dimensional, as it is
constant here) collapses for the two studied jet Reynolds numbers,

howing, in addition, independence to the suspension regime. In what
ollows, a cylindrical coordinate system, (𝑧, 𝑟, 𝜃), is adopted and the
otions in the horizontal plane are discussed in terms of the radial

oordinate 𝑟. Fig. 7(d) reports the mean radial position, which, as de-
cribed, increases with 𝑁𝑠. The change in the coordinate system brings
similar trend for the maximum and minimum of the time-average

alues, that surround well the ensemble average trend, despite showing
spread that increases with the number of spheres, in agreement with
revious comments.

The mean value of the radial and vertical coordinates can serve as
proxy for the location of the equilibrium position for the collection

f spheres. Similarly, the associated standard deviations can inform
n the spatial extent of these regions. For a single sphere at 𝑅𝑒𝑗 =
950, this region is stable so the vertical and radial position standard
eviations, 𝑧′ and 𝑟′, are close to zero and correspond to (1∕

√

2 times)
he oscillation amplitudes. These values are much smaller than for a
ingle sphere in the chaotic regimes, due to a larger spatial exploration
nd the extreme events. The vertical standard deviation peaks for 𝑁𝑠 =
in both regimes, as the vertical exploration of the vessel is the largest,
s observed in Fig. 6(a–b). As the typical highest altitudes reached
ecreases with 𝑁𝑠, a similar, approximately linear, decrease of 𝑧′ is
hen observed for both jet Reynolds numbers. While 𝑧′ is approximately
7

double in the chaotic regime for 𝑁𝑠 = 3 than in the regular one, it is six
times larger than for a single sphere, and the linear decrease for 𝑁𝑠 > 3
is slightly less steep in that case. In addition, the disparities among the
different trajectories, depicted by the minimum and maximum of the
time-averaged values around the ensemble average one, are also larger
at 𝑅𝑒𝑗 = 11600. The standard deviation of the radial position 𝑟′ is found
to be increasing with 𝑁𝑠, monotonously in the chaotic regime, and
possibly reaching a plateau in the regular one. The disparities among
trajectories are small for 𝑅𝑒𝑗 = 8950 and 𝑁𝑠 ≤ 6, much smaller than for
𝑁𝑠 = 12, while they are moderately large and constant at 𝑅𝑒𝑗 = 11600.

The changes in the spheres’ spatial exploration of the flow volume
are summarized in Fig. 8(a–b), where the vertical and radial position
probability density functions (PDF) are displayed. At low jet Reynolds
number, the most probable position is in the vicinity of the cylinder’s
bottom wall, except in the case of a single sphere which shows a bell
curve centered on the equilibrium position. The PDF for 𝑁𝑠 ≥ 3 presents
roughly decreasing exponential tails, with more and more pronounced
slopes with increasing 𝑁𝑠. In opposition, at the higher value of the
jet Reynolds number, the PDF for a single sphere is characterized by
a broad peak around the equilibrium position and a small one at a
much lower altitude. This peak increases in value for 𝑁𝑠 ≥ 3 and moves
loser to the bottom wall, and a plateau is observed for larger altitudes.
his plateau, showing equiprobability, extends up to 15𝑑𝑗 for 𝑁𝑠 = 3,

where a steep decay is found. As the number of spheres increases,
this plateau ends at lower and lower altitudes, and the decay becomes
slightly less steep. This results in a probability of finding the spheres
around 𝑧 = 15𝑑𝑗 that is respectively 0.23, 0.07, and 0.02 times the one
of a single sphere for 𝑁𝑠 = 3, 6, and 12 (similar comparisons can be
made for 𝑅𝑒𝑗 = 8950 around 𝑧 = 9𝑑𝑗 , showing even smaller ratios as
the collection of spheres does not reach high altitudes in that case).

While the radial position PDF are very different between both
regimes for a single sphere, they have a similar shape for several
spheres independently of 𝑁𝑠 and 𝑅𝑒𝑗 , with a slow monotonous expo-
nential decrease. Note that the left-most point, centered at 𝑟 = 0, is
probably underestimated due to measurement and binning biases. For
a single sphere, half a bell curve centered around 𝑟 = 0 is observed in
the regular regime, while a much broader distribution is found for the
chaotic regime, almost flat up to 𝑟 = 𝑑 , followed by a steep decay.
𝑗
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Fig. 7. (color online) Average vertical 𝑧 (a), transverse 𝑦 (b), and radial 𝑟 (d) positions normalized by the jet diameter 𝑑𝑗 as a function of the number of spheres 𝑁𝑠. (c) is a
normalization of (a) by the square of the ratio of the sphere terminal velocity 𝑈𝑠 and the jet mean exit velocity 𝑈𝑗 . Similarly, (e) and (f) display the standard deviations of the
vertical and radial positions, 𝑧′ and 𝑟′. Once a mean or standard deviation is obtained from each individual sphere trajectory, it is averaged to produce the solid lines, while
the dashed lines are obtained from the minimum and maximum of these sets of values. The symbols indicate the jet Reynolds number values: 𝑅𝑒𝑗 = 8950 (∙) and 11,600 (■)
respectively (alternatively 𝐹𝑟 = 6.3 and 8.16).
The exponential decay for several spheres is the steepest for 𝑁𝑠 = 3 at
𝑅𝑒𝑗 = 8950 and the rate decreases with increasing both 𝑁𝑠 and 𝑅𝑒𝑗 , so
that 12 spheres in the chaotic regime have a probability of exploring
𝑟 = 5𝑑𝑗 that is only 4 times less than exploring 𝑟 = 0.5𝑑𝑗 (to be compared
to a ratio of 90 for 𝑁𝑠 = 3 in the regular regime).

For completeness, Fig. 8(c–f) shows the power spectral densities
(PSD) of the vertical and radial positions in both regimes. The vertical
position PSD show little change with respect to the number of spheres,
with the exception of an increase of energy in the high-frequency range
for 𝑅𝑒𝑗 = 8950, which is reminiscent of the behavior observed for a
single sphere as 𝑅𝑒𝑗 increases (Fig. 4(b)). This is the signature of the
onset of a chaotic regime when several spheres are present in the flow
configuration that yields a regular regime for a single sphere. This is
also seen in Fig. 8(d), where the high amplitude peak is lost for 𝑁𝑠 ≥ 3,
as the spectra show a plateau followed by a power law decay. This
decay becomes slightly less steep as 𝑁𝑠 increases so that the plateau is
found in a lower and lower frequency range (to the point of not being
observed for 𝑁𝑠 = 12, indicating that the dynamics remain correlated
for longer duration). At a higher jet Reynolds number, the decay is
even more moderate, and the behavior along 𝑁𝑠 is also similar, but in a
lesser extent, and no plateau is observed over the acquisition duration
8

explored.
The change in the particles’ dynamics and in their sampling of the
flow volume can be understood in the light of the velocity statistics.
The mean velocity does not carry much information in a closed flow,
as it should be zero if the spheres sample a large enough portion of the
flow volume (by conservation of mass and as the mean particle velocity
is independent of the particle characteristics Machicoane et al., 2014;
Machicoane and Volk, 2021). Despite a moderate spread, this holds true
here (see Fig. 9(a–b)). The track-by-track disparities around the mean
value are a growing function of the jet Reynolds number, and also of the
number of spheres for the 𝑟 coordinate. The standard deviation of the
spheres’ velocity show less disparities, with the exception of the vertical
coordinate at high 𝑅𝑒𝑗 and 𝑁𝑠 (Fig. 9(c–d)). The standard deviation of
the vertical velocity shows a trend that is very similar to the one of the
vertical position (Fig. 7(e)), with higher values in the chaotic regime
and a peak for 𝑁𝑠 = 3 followed by a fast decrease. The slope is less steep
at 𝑅𝑒𝑗 = 11600, resulting in values of 𝑣′𝑧 almost three times larger than
in the regular regime for 𝑁𝑠 = 12. The trend displayed by the radial
coordinate is overall similar, but the slope at 𝑅𝑒𝑗 = 8950 is much more
moderate, and the chaotic regime presents a plateau. The values of 𝑣′𝑟
are hence larger in the regular regime for 𝑁𝑠 = 3 and 6 but become

smaller than in the chaotic regime when 12 spheres are present. The



International Journal of Multiphase Flow 162 (2023) 104406O. Stamati et al.

j
o

h
t
w
p
p

a
d
B
i
(
v
s
t
n
l
s
T
v
t
l

Fig. 8. (color online) Probability density functions (PDF) of the vertical 𝑧 (a) and radial 𝑟 (b) positions normalized by the jet diameter 𝑑𝑗 at different number of spheres 𝑁𝑠 and
et Reynolds number 𝑅𝑒𝑗 . (c–f) Power spectral densities (PSD) of the vertical 𝑧 (left) and radial 𝑟 (right) positions, normalized by the corresponding variances, at different number
f spheres 𝑁𝑠, and for jet Reynolds numbers 𝑅𝑒𝑗 = 8950 (middle) and 11,600 (bottom), alternatively Froude numbers 𝐹𝑟 = 6.3 and 8.16.
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igh values of the radial velocity standard deviation are at the origin of
he extreme events that lead to the wide radial exploration of the vessel,
hich leaves a clear signature with the monotonously growing radial
osition standard deviations (Fig. 7(e)) or alternatively with the radial
osition PDF presenting wider and wider exponential tails (Fig. 8(b)).

The velocity of the radial and azimuthal coordinates, 𝑟 and 𝜃,
re approximately Gaussian and their shapes do not show a strong
ependence on the number of spheres (not shown here for conciseness).
ecause the upward drag exerted by the jet on the sphere is strongly

nhomogeneous in the cylinder, the competition between suspension
drag) and settling (buoyancy) strongly vary spatially and hence the
ertical velocity distributions are asymmetric, except for the single
phere in the regular regime, where both forces remain in balance at all
imes (Fig. 9(e–f)). While this asymmetry persists when the jet Reynolds
umber is increased, the distribution for 𝑁𝑠 = 12 resembles the ones at
ower numbers of spheres (while a slight ordering of the distributions is
till visible with respect to 𝑁𝑠, especially for positive velocity values).
he suspension for 𝑅𝑒𝑗 = 8950 and 𝑁𝑠 = 12 being only partial, the
ertical velocity PDF presents much narrower tails in that case, as
he spheres do not get advected to high altitudes, resulting in both
ower upward velocity increases during rising events and lower velocity
9

s

ecreases during falling events. This explains the strong differences in
ertical position PDF observed in Fig. 8(a), which is not necessarily
bservable in the evolution of the average vertical position with 𝑁𝑠,
monotonously decreasing function (Fig. 7(a)) that results from the

rdering of the vertical velocity PDF.

.2. Residence times, collisions, and contacts

Velocity auto-correlation functions are used to probe the particle
hort-time dynamics, to complement the high-frequency range of the
ower spectral densities presented in Fig. 8(c–f). As indicated by the
pectra, the short-time dynamics show different behaviors along in-
reases of 𝑁𝑠 for the different coordinates and jet Reynolds numbers.
his is well illustrated by the radial velocity auto-correlation functions
Fig. 10(a–b)), defined as 𝑅𝑣𝑟 (𝜏) = ⟨𝑣𝑟(𝑡)𝑣𝑟(𝑡 + 𝜏)⟩, where 𝜏 is a time lag
nd ⟨⋅⟩ is an ensemble average. Symbols marking 75% decorrelation
re added to help illustrate the short-time decorrelation dynamics. For
𝑒𝑗 = 8950, a short-time decorrelation, as well as oscillations, are
bserved for a single sphere, due to the oscillatory motion in the regular
egime. The behaviors are almost indistinguishable for 𝑁𝑠 ≥ 3, as only a
light ordering towards longer decorrelation is visible as 𝑁 increases
𝑠
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Fig. 9. (color online) Mean vertical (a) and radial (b) velocities normalized by the jet mean exit velocity 𝑈𝑗 as a function of the number of spheres 𝑁𝑠, and similarly with the
standard deviation of the vertical (c) and radial (d) velocities. The mean and standard deviations values have respectively been multiplied by 102 and 103 for visibility. Once a
mean or standard deviation is obtained from each individual sphere trajectory, it is averaged to produce the solid lines, while the dashed lines are obtained from the minimum
and maximum of these sets of values. Probability density functions (PDF) of the normalized vertical velocity for jet Reynolds numbers 𝑅𝑒𝑗 = 8950 (e) and 11,600 (f), alternatively
Froude numbers 𝐹𝑟 = 6.3 and 8.16.
(much smaller than the increase in correlation time compared to the
single sphere case). On the contrary, at 𝑅𝑒𝑗 = 11600, the short-time
decorrelation becomes faster as 𝑁𝑠 increases, starting from the single
sphere case that shows the longest correlation time. The decrease of
the correlation time seems monotonous but appears to saturate for
𝑁𝑠 = 12. However, the auto-correlation functions change shapes, much
more than for 𝑅𝑒𝑗 = 8950, so that a correlation time extracted from
100% decorrelation (i.e., first instance of 𝑅𝑣𝑟 = 0), through the value
of 𝜏 for this given threshold or through an integral up to this point,
would give a much different result. This means extracting a timescale
of the particle dynamics would yield trends that heavily depend on the
decorrelation threshold.

To quantitatively investigate the partial suspension of the spheres
for 𝑁𝑠 = 12 and 𝑅𝑒𝑗 = 8950, associated with narrow-tailed vertical
velocity PDF (Fig. 9(e)), the long-time dynamics is explored through a
residence time analysis. For that purpose, two ‘‘regions’’ are defined,
namely the ground and the rest of the flow volume. A loose definition
of a grounded sphere is taken, to account for the slightly slanted bottom
wall of the cylinder and for the possibility of having two spheres on top
of each other, with 𝑧 < 𝑑 (while a sphere sitting at the very bottom of
10

𝑠

the vessel presents 𝑧 = 𝑑𝑠∕2). This definition is chosen for its simplicity
and as it only biases towards slightly longer residence times on the
ground (by only a couple times the temporal resolution as a sphere
lands on or is suspended away from the ground), instead of missing
grounded events by exclusion. The remainder of the time series is set
to belong to the suspended sphere category.

Fig. 10(c–d) reports the probability density functions of consecutive
periods of time spent on the ground or suspended, respectively in
dashed or solid lines. No data is available for the single sphere case
in the regular regimes as the sphere remains suspended as long as the
jet is on, and only three grounded events are observed in the chaotic
regime. The time intervals of the suspended events in between these
grounds events are too long to be visible on the axes displayed here,
except for one event, and the count for each time is reported instead of
a PDF for the same reason. This shows two ground events of the shortest
duration possible (𝑑𝑡 = 1∕60 s, the inverse of the acquisition frequency),
corresponding to direct rebounds, separated by a suspension of 0.1
s, and a later ground event that lasts 10 times longer than the other
rebounds (𝑑𝑡 = 1∕6 s), before the sphere gets lifted up by the jet.
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Fig. 10. (color online) Auto-correlation functions of the radial (a) and vertical (b) velocity for 𝑅𝑒𝑗 = 8950 and 11,600 respectively (alternatively 𝐹𝑟 = 6.3 and 8.16). Probability
density functions (PDF) of the residence time, spent grounded (solid lines) or suspended (dashed lines) for 𝑅𝑒𝑗 = 8950 (c) and 11,600 (d). The two dots in (d) correspond to the
counts for the 3 measurable grounded events in the case of a single sphere (counts are used instead of PDF so the data stay on a compatible scale). The time axes are normalized
by the vertical oscillation frequency in the regular regime 𝑓𝑧 = 2.1 Hz. (e) Average (solid lines) and maximum (dashed lines) ratio of the number of suspended spheres to the total
number of spheres 𝑁𝑠 (errorbars stand for the standard deviation) as a function of 𝑁𝑠. (f) Percentage of the time where 𝑁 spheres are kept suspended, for 𝑁 = 𝑁𝑠 and 𝑁 = 𝑁𝑠∕2
n solid and dashed lines.
When several spheres are present, many grounded and suspended
phere events occur. The most probable residence time, in both cases,
emains the shortest time measurable. However, while for 𝑅𝑒𝑗 = 8950
nd 𝑁𝑠 ≤ 6 secondary peaks are present at long times (around 1.5
nd 1∕𝑓𝑧 for 𝑁𝑠 = 3 and 6), the PDF decays from this value onward
or 𝑁𝑠 = 12, showing the lack of suspension of the spheres in that
ase. This is accompanied by a broad secondary peak at long times
or grounded events (1.5 ≤ 𝑑𝑡𝑓𝑧 ≤ 4.5) (while no such peak is visible
or lower numbers of spheres, as only a small peak at 1.5∕𝑓𝑧 appears

for 𝑁𝑠 = 6). A peak for 𝑑𝑡∕𝑓𝑧 = 5 and at a probability of 0.15%
also exists but is not displayed for visibility. For 𝑅𝑒𝑗 = 11600, while
the suspension probability is smaller at long times and higher at small
times for 𝑁𝑠 = 12 compared to 3 and 6, no sphere remain grounded
for more than 𝑑𝑡∕𝑓𝑧 = 2.5. Fig. 6(e) seemed to imply that longer
residence times on the ground could be found for 𝑁𝑠 = 3 than 𝑁𝑠 = 12.
However, this was caused by many rebound events that translate to
higher probabilities of short-time grounded events (that can happen
11
subsequently) compared to the dynamics at 𝑁𝑠 = 12, while this latter
case presents as expected much higher probabilities of long grounded
events.

The overall changes in suspension capacity are measured in
Fig. 10(e–f), showing respectively the average number of suspended
spheres and the percentage of the time where 𝑁 spheres are suspended.
The average number of suspended spheres, normalized by 𝑁𝑠, decreases
almost linearly with 𝑁𝑠, with a steeper slope at the lower jet Reynolds
number value. In addition, the dashed lines report the maximum
number of spheres suspended, showing that all the spheres can be
suspended up to respectively 𝑁𝑠 = 3 and 6 for 𝑅𝑒𝑗 = 8950 and 11,600,
while only approximately 60 and 80% of the spheres can be suspended
at once when 12 spheres are present. To complement this, the dashed
lines in Fig. 10(f) report the percentage of the measurement duration
that presents a suspension of at least half of the spheres, a value almost
constant and always above 90% for the high jet Reynolds value for
𝑁 ≤ 6, while a linear decay is seen for the lower 𝑅𝑒 value over the
𝑠 𝑗
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Fig. 11. (color online) Probability density function (PDF) of the distance 𝑟 between pairs of spheres, normalized by the sphere diameter 𝑑𝑠 for 𝑅𝑒𝑗 = 8950 (a) and 11,600 (b)
(alternatively 𝐹𝑟 = 6.3 and 8.16). PDF of the number of collisions (solid lines) and contacts (dashed line) happening simultaneously for 𝑅𝑒𝑗 = 8950 (c) and 11,600 (d). (e) Mean
pair separation as a function of the number of spheres 𝑁𝑠. (f) Collision (solid lines) and contact (dashed lines) frequency, normalized by the vertical oscillation frequency in the
regular regime 𝑓𝑧 = 2.1 Hz and 𝑁𝑠, as a function of 𝑁𝑠. Frequencies are obtained as the number of events divided by the measurement duration.
a

whole range of 𝑁𝑠. The suspension percentage of all the spheres is on
he contrary a very quickly decaying function, already lower than 5% at
𝑠 = 6 independently of the jet Reynolds number. An alternate probing

f the suspension capacity of the jet is done by studying the statistic of
he cumulative altitude, defined as 𝑍𝑐 =

∑𝑁𝑠
𝑛=1 𝑧𝑛 with 𝑧𝑛 the altitude of

ach sphere. The cumulative altitude presents statistics that are close to
Normal distribution, with a standard deviation that mostly depends

n the jet velocity, while the average value increases both with 𝑁𝑠
and 𝑅𝑒𝑗 (not shown here for conciseness). For both Reynolds numbers,
the increase of 𝑍𝑐 with 𝑁𝑠 is approximately linear and equal to more
than twice the value of ⟨𝑧⟩ in the case of a single sphere. This means
that the total potential energy of the collection of spheres increases
with 𝑁𝑠, which is thought to be due to a better harnessing of the jet’s
kinetic energy by the spheres as they experience an upward drag force
surpassing their buoyancy a region of the flow that is larger than the
vicinity of the equilibrium position.

In addition to grounded sphere events, the collective dynamics
change the inter-particle distances as 𝑁 increases. At each frame, the
12

𝑠

distance in 3D between pairs among the 𝑁𝑠 spheres, 𝑑𝑟, is computed,
and the probability density functions are reported in Fig. 11(a–b). The
probability of 𝑑𝑟 = 𝑑𝑠, i.e., two spheres touching, increases drastically
with 𝑁𝑠, only after 𝑁𝑠 = 6 for 𝑅𝑒𝑗 = 8950 and monotonously for
𝑅𝑒𝑗 = 11600. For long distances, the probability is larger at 𝑁𝑠 = 3
in both cases, but is followed by 𝑁𝑠 = 12 at low Reynolds number
instead of the expected 𝑁𝑠 = 6 found for the higher value of 𝑅𝑒𝑗 .
This can be explained by the fact that 12 spheres occupy each other
vicinity in a more compact fashion, so several spheres in contact are
separated by distances greater than 𝑑𝑟 = 𝑑𝑠. This is well illustrated
by the peak of probability at 𝑑𝑟 = 2𝑑𝑠, indicating three spheres aligned
and touching (e.g., A is in contact with B which is in contact with C). As
more suspension is found for that case at 𝑅𝑒𝑗 = 11600, this secondary
peak is very broad and almost merges with the peak at 𝑑𝑟 = 𝑑𝑠. In
addition, for this jet Reynolds number, the PDF is almost flat at 𝑁𝑠 = 3,
indicating an equiprobability up to distances of 6𝑑𝑠 that corresponds to

dynamics almost void of particle-to-particle interactions.
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Such interactions are explored by analyzing the probability of
spheres touching each other, divided into two categories: contacts
and collisions. Contacts are defined as events happening for grounded
spheres, where low velocity values are expected, while collisions occur
between two suspended spheres, often associated with large momentum
transfers (e.g., collision between the black and brown colored spheres
in Fig. 6(a) resulting in a high altitude reached by the black sphere
while the brown one becomes grounded). The numbers of contacts and
collisions occurring at a given time, 𝑁𝑐 , are computed and their PDF are
reported in Fig. 11(c–d). Contacts are found to be always less likely (or
as likely for 𝑁𝑠 = 12 at 𝑅𝑒𝑗 = 11600) than collisions, with the exception
f 𝑁𝑠 = 12 at 𝑅𝑒𝑗 = 8950. In this case, there is a high probability of hav-
ng several spheres on the ground, in contact with each other (showing
lmost an equiprobability up to 3 contacts before a decay) and hence
nlikely to be easily resuspended. This explains the occurrence of very
ong residence times with non-negligible probabilities. The PDF of the
umber of simultaneous contacts or collisions 𝑁𝑐 are approximately
xponentially decreasing, and the slopes are decreasing functions of
𝑠.

On average, the inter-particle distance is constant along 𝑁𝑠 in the
regular regime, at a low value (⟨𝑑𝑟∕𝑑𝑠⟩ ≃ 2), and is found higher
and only slightly decreasing in the chaotic regime (between 4.5 and
3 𝑑𝑠, Fig. 11(e)). However, the numbers of contacts and collisions are
linearly increasing with 𝑁𝑠. The rate of increase is approximately the
same for collisions at both jet Reynolds numbers (with collisions being
always about twice more frequent than at the lower 𝑅𝑒𝑗 value). On
the contrary, the slope along 𝑁𝑠 is much bigger for contacts at a low
Reynolds number than at the higher value, so the frequencies are about
equal for 𝑁𝑠 = 3, but three times larger when 12 spheres are present.
In this case, contacts are 1.45 times more likely than collisions, while
they are as likely for 𝑅𝑒𝑗 = 11600.

5. Discussion

The increase of probability in larger (negative or positive) vertical
velocity values compared to the single sphere case deserves to be
discussed further (Fig. 9(e–f)). For the regular regime, a very narrow
PDF is observed for 𝑣𝑧 as the sphere only oscillates at small amplitudes.
The typical velocity can be estimated as 𝑧′, the oscillation amplitude,
times 𝑓𝑧, its frequency, resulting in 𝑣𝑂𝑧 ∕𝑈𝑗 = 𝑧′𝑓𝑧∕𝑈𝑗 ≃ ±0.02. This
value is in very good agreement with the largest (absolute) values
displayed in Fig. 9(e), up to 10 times smaller than the ones found when
more than one sphere is present. For 𝑁𝑠 ≥ 3, a large decrease of the
zero vertical velocity probability is found, and both large negative and
positive values become much more probable. Collisions lead to fast
and drastic upward velocity increase, leading to very high altitudes
(Fig. 6(a)), that are followed by falling events with slow growth of the
downward velocity. This difference in timescale between both events
explains partially the wider negative tail on the velocity PDF, compared
to the positive one. In addition, this is also due to the fact that the
jet, where upward fluid drag is imparted on the spheres, occupies
only a small portion of the flow volume.2 At this low jet Reynolds
number value, spheres can spend longer periods of time on the bottom
wall of the vessel for 𝑁𝑠 ≥ 6 (Fig. 10(c)), so that the zero vertical
velocity probability increases drastically. The dynamics become largely
modified by the many contacts at 𝑁𝑠 = 12 (Fig. 11), 50% more likely
than collisions in the same flow regime, and 3 times more likely than
contacts at 𝑅𝑒𝑗 = 11600. This explains the much narrower tails on the
vertical velocity PDF in this case (Fig. 9(e)). The behavior along 𝑁𝑠 in
the chaotic regime observed in Fig. 9(f) shares some similarities, with

2 A cylinder of height 40 mm and radius 30 mm is 1.1 10−4 m3, while a
cone of the same height and of full angle of 22◦, based on twice the spreading
rate of the velocity half-width radius, see Pope and Pope (2000), only contains
2.7 10−6 m3, i.e., a bit less than 2% of the cylinder’s volume.
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c

broad tails for 𝑁𝑠 ≥ 3 and a lower zero vertical velocity probability
ompared to the single sphere case, but the conditions at 𝑁𝑠 = 12
o not stand out as all the spheres remain moderately well suspended
Fig. 10(e–f)). The PDF are all ordered along 𝑁𝑠, with a narrowing
f the tails and an increase of the zero velocity probability. Note that
ue to the chaotic dynamics at 𝑅𝑒𝑗 = 11600, the single-sphere vertical
elocity PDF already displays moderate tails, wider for negative values,
imilar to the case of several spheres (while in a less pronounced
ashion).

The studied system, unlike the case of a single sphere, is multi-
table, with each sphere evolving around a metastable position, until it
witches for another one, through large fluctuations in the fluid’s forces
r by a collision with another sphere. In addition, when more and more
pheres are present, contacts increase the stability of positions on the
round, in the sense that it requires events of even larger magnitudes
o move the spheres. The global metrics report on the sum of the
etastable positions, so this framework retains the system axisymmetry

where the word global indicates obtained through an ensemble av-
rage here). However, some deviations are observed, as on the mean
elocity where a zero value is expected for a closed flow (Fig. 9a-
). This is not due to a lack of statistical convergence, but rather to
he fact that only a few tens of metastable positions are summed, and
ven a slight dissymmetry in the number of such events can result in
eviations from axisymmetry. The difficulty in retaining symmetries in
he experimental measurements of such multistable systems is a well
ocumented challenge, that is very common in the general contexts
f physics, chemistry, or biology (Kramers, 1940; Van Kampen, 1981),
nd has been many times reported in fluid mechanics with fluctuation-
riven bi-stable systems (e.g., Constable, 2000; Benzi, 2005; Berhanu
t al., 2007; de la Torre and Burguete, 2007; Grandemange et al., 2013)
s well as other particle-laden flows (Maxey, 1987; Djeridi et al., 1999;
liment et al., 2007; Machicoane et al., 2016; Machicoane and Volk,
021).

One objective of this study is to explore the competition between
everal spheres for a given equilibrium position in the jet and to char-
cterize its influence on the suspension regimes. While both regular and
haotic regimes are explored for a single sphere in this configuration,
he dynamics are always chaotic as soon as 3 spheres are present.
owever, drastic changes in behavior were highlighted by change in

he jet Reynolds number and the number of spheres, requiring the
efinition of other suspension regimes, that adequately describe the
ollective suspension dynamics. Since the main mechanism modifying
he dynamics is the interaction between spheres, this definition should
e based on collisions and contacts. The change in the exploration of
he flow volume, the velocity statistics, and the residence times all
ppear to be linked to the occurrence of these events.

When almost no contact or collision exists, the spheres evolve
ndependently of each other, by definition in an uncoupled way, as the
robability of spheres being far from each other is large (Fig. 11b).
his is only found for 𝑁𝑠 = 3 and 𝑅𝑒𝑗 = 11600 and the dynamics
emain chaotic, as even a single sphere shows extreme events here (due
o hydrodynamics fluctuations). This defines an ‘‘uncoupled chaotic’’
egime. When the frequency of contacts, divided by the number of
pheres, becomes close to or larger than the oscillation frequency, this
nsets a ‘‘collision-driven’’ regime. It occurs for the lower jet Reynolds
umber with 3 and 6 spheres and for the higher Reynolds number at 6
nd 12 spheres. In this regime, collisions occur as much or more than
ontacts, and the suspension of half the spheres occurs more than 50%
f the time (Fig. 10f). In the case of respectively 𝑁𝑠 = 3 and 6 for 𝑅𝑒𝑗 =
950 and 11,600, this rate is in the vicinity of 90% and all the spheres
an be suspended at times, defining a high-suspension sub-regime,
hile the other cases are only moderately suspended. Finally, when 12

pheres are present at the lower jet Reynolds number value, contacts
re more likely than collisions, and long residence times of grounded
pheres are not rare, as groups of spheres occupy the bottom wall of the

ylinder and only a quarter of the spheres are suspended in average,
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Table 2
Collective suspension regimes as functions of the jet Reynolds number 𝑅𝑒𝑗 = 𝑈𝑗𝑑𝑗∕𝜈𝑙
and the number of spheres 𝑁𝑠: the regular and chaotic regime are defined only for
a single sphere, while several spheres can be in an ‘‘uncoupled chaotic’’ regime, a
‘‘collision-driven’’ regime (associated with a high suspension percentage, marked here
by the ∗, or with moderate suspension), and a ‘‘contact-driven’’ regime. The regimes
are termed and distinguished based on the quantitative measurements of suspension
rates, contacts and collisions from Figs. 10 and 11.
𝑅𝑒𝑗 𝑁𝑠

1 3 6 12

8950 Regular Collision-driven∗ Collision-driven Contact-driven
11600 Chaotic Uncoupled chaotic Collision-driven∗ Collision-driven

and even suspending only half the spheres is very rare (Fig. 10e–
f). This defines a ‘‘contact-driven’’ regime, and the various regimes
are summarized in Table 2. The uncoupled chaotic and contact-driven
regimes are illustrated in the Supplementary Materials (videos).

For the single-sphere case, the occurrence of a chaotic regime at
higher jet velocities explored by Davoust and Jacquin (2009) is gen-
eralized by the current study. The exploration of the parameter space
differing widely, the onset of this regime cannot be presented along a
unified non-dimensional-group (e.g., the Froude number as proposed
by Davoust and Jacquin, 2009), and a parametric study would be
required to answer this question. The orders of magnitude of the mean
altitudes in both the regular and chaotic regimes are however in good
agreement. When a collection of spheres is suspended in the jet, the
drastic changes in dynamics lead to more time spent on the ground,
both with more frequent and longer events, in opposition to only quick
rebounds in the single-sphere case. This means that the geometry of the
studied system can play an important role (comparatively to the role
played by the jet), in particular for the dynamics of grounded events.
For instance, changes in the current geometry (e.g., value of the slope
of the cylinder base, change in the cylinder’s diameter) could result in
differences in the values reported here such as the distributions of the
ground residence times or the contact frequencies. In addition, when
many spheres are present, such as in the contact-driven regime, the
size of the container becomes only slightly larger than the pile formed
by the spheres, and confinement effects play a role as well. However,
beyond the exact values of the metrics and their scaling laws, which
are prone to such biases and are unlikely to be directly transposable
to other systems, the qualitative picture is presumably very general. In
the case of a single sphere, the changes of regimes are explained by a
competition between the apparent size of the jet at a given altitude and
the sphere diameter, and such confinement balance is solely caused by
the base flow geometry and therefore independent of the surrounding
system geometry. Similarly, the transition to the collision-driven regime
is not likely to be influenced by the system geometry, as it is governed
by how many spheres can be sustained in the vicinity of the stable
region, a function of the sphere diameter and the jet apparent size (at
a given altitude, which adds a dependence on the fluid’s and spheres’
densities). The threshold of the onset of the contact-driven regime is
probably heavily influenced by the geometry, but its existence is most
likely universal. In addition, the experimental methodology and the
analysis framework presented here are general and can be used to
study such systems in various variations of the parameters space and
geometry, as well as broader aspects of particle-laden flows.

6. Conclusion

X-ray radiography was used with a divergent X-ray source and a
planar detector to record time series of attenuation maps resulting
from a collection of mono-dispersed glass spheres immersed in water.
With the knowledge of the system geometry and the spheres’ diameter,
radioSphere was leveraged to retrieve the 3D trajectory of each
sphere, yielding the 4D kinematics of the collection of spheres. This
14

stands as the first implementation of radioSphere in a dynamical
system, as its use had been limited to synthetic data and a static
granular assembly (Andò et al., 2021). The combination of the X-ray
measurement technique and the developed analysis method allowed
for the investigation of the suspension of a collection of heavy spheres
in an upward vertical jet. Such configuration is well described for a
single sphere, and the use of two different jet velocities led to the
exploration of two suspension regimes, namely the regular and chaotic
regimes (Davoust and Jacquin, 2009). In both cases, the sphere has an
equilibrium position at a certain distance from the jet and along the
jet’s axis, but can present either regular oscillations or large deviations
associated with extreme events. The number of spheres was varied in
the range 3 ≤ 𝑁𝑠 ≤ 12 at each jet Reynolds number value, exploring 6
onditions for a collection of spheres, to investigate the competition
f many spheres for an equilibrium position. While the trajectories
ould have been retrieved using multiple cameras in direct visible-light
maging in the case of a few spheres, the conditions explored led to
any collisions and prolonged contacts between several spheres which
ecessitated the use of X-rays. In addition, a cylindrical vessel, with a
lightly downward slanted base, contained the working fluid and main-
ained a constant number of spheres throughout the measurements.

hile the specifics of the geometry (strong confinement and slanted
ase in particular) may prevent direct transposition of the results to
ther systems, the qualitative picture is presumably very general, and
hat the methodology to characterize the different regimes is also of
road applicability.

The exploration of the flow volume by the spheres was investi-
ated using the statistics of the spheres’ positions, namely with the
irst two moments and the probability density functions, while the
ynamics were presented in terms of power spectral densities and
uto-correlation functions. Wide changes occur as 𝑁𝑠 increases, which
an be explained by the spheres’ velocity statistics. In particular, the
ertical velocity probability density functions present broad tails that
arrow with 𝑁𝑠, resulting in a decrease in the altitudes reached and

an increase in the radial exploration. The tails originate from collisions
between spheres, yielding large positive and negative vertical velocity
values. As more spheres are present in the vessel, some spheres exit
completely the suspension region created by the jet for some time,
and the probability of finding a sphere at the bottom wall of the
vessel increases. Spheres can be found in contact with each other there,
decreasing the likelihood of a resuspension. The suspension rate and
the occurrence of collisions and contacts led to the introduction of
three suspension regimes of a collection of spheres, listed in decreasing
degree of agitation: ‘‘uncoupled chaotic’’ regime, ‘‘collision-driven’’
regime (split into a high or moderate level of suspension), and ‘‘contact-
driven’’ regime. As only two parameters were varied in the current
study, extending this framework and the existence of these suspension
regimes in a wider parameter space would pose a natural future direc-
tion. In particular, variation of the sphere-to-jet diameter and density
ratios are possible with the current approach, but they would require
an adaptation of the imaging configuration, namely of the distances
between the source, object, and detector, as higher altitudes would be
reached and the apparent magnification range would change.
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Fig. 12. Fitted calibration of normalized attenuation versus path length for a single 10mm sphere (a) and 12 stationary spheres at lowest input velocity (b).
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Appendix A. Calibration of raw attenuation into path length im-
ages

An essential initial step of radioSphere is the transformation
of the raw attenuation radiographic projections into calibrated path
length images (expressed in mm). For the presented experiments, this
was done along a two-step approach. First, a set of 100 radiographies
of a single sphere centered on the detector panel were averaged, and
the relationship between the path length inside the sphere and the
measured attenuation on the detector panel was calculated, as shown in
Fig. 12(a). This calibration curve for a single sphere follows the Beer–
Lambert law. However, for an assembly of spheres the linearity of the
simple Beer–Lambert attenuation law is violated, mainly due to beam-
hardening and scattering artifacts (Brooks and Di Chiro, 1976; Kak and
Slaney, 2001).

To account for a non-linear attenuation law beyond one particle
diameter, a second calibration step is performed. For this, the stationary
projection of each experimental configuration is transformed into a
path length image (expressed in mm) based on the single sphere linear
attenuation fit obtained previously. radioSphere is then run to
reconstruct the 3D position of the stationary spheres, which are, in
turn, used to produce a synthetic projection of the spheres assembly,
expressed in mm. The synthetic and the acquired projections of the
stationary spheres are then used to fit a new attenuation law, as shown
in Fig. 12(b).

In summary, for each experimental configuration, a non-linear cal-
ibration curve is estimated and used to transform the set of acquired
radiographs to path length images. This law corresponds to the studied
spheres material, specific acquisition settings, and imaging geome-
try, accounting at the same time for any non-linearity caused by
beam-hardening and scattering artifacts. It should be noted here that
alternatively a more automatic parametric function fit between the
scatter plot of the measured detector attenuation vs. path length for
each pixel can be performed through a least-squares method in the style
of Fragnaud et al. (2022).
15
Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ijmultiphaseflow.2023.104406.
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