Results

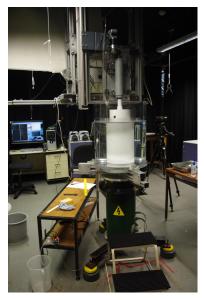
Conclusions

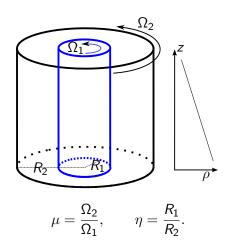
A new Taylor-Couette apparatus to study turbulence in stratified fluids

Pierre Augier^{1,2}, Jamie Partridge¹, Colm Caulfield¹, Stuart Dalziel¹ and Paul Linden¹

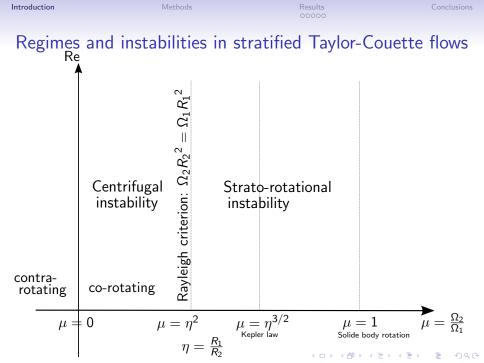
1. DAMTP, University of Cambridge 2. LEGI, CNRS, Université Grenoble Alpes

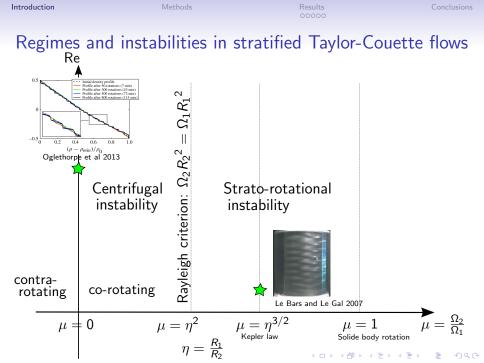
March 24, 2015




▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のくぐ

Aethods


Results 00000 Conclusions


A new Taylor-Couette apparatus

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Results

Conclusions

A new Taylor-Couette apparatus


For the experiments, we

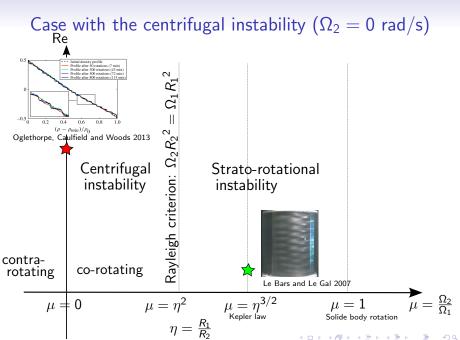
- adjust the alignment,
- control the rotation rates $\Omega_1(t)$ and $\Omega_2(t)$
- fill the tank with any stable density profiles using two peristaltic pumps controlled by computer,

Results

Conclusions

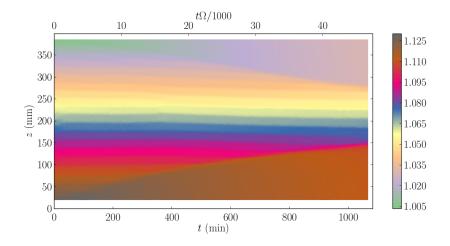
A new Taylor-Couette apparatus

For the experiments, we


- adjust the alignment,
- control the rotation rates $\Omega_1(t)$ and $\Omega_2(t)$
- fill the tank with any stable density profiles using two peristaltic pumps controlled by computer,
- measure density profiles with a conductivity probe attached to a traverse; measurements at quite high speed (10 cm/s),

• optical measurements (shadowgraph, pearlescence, 2D PIV).

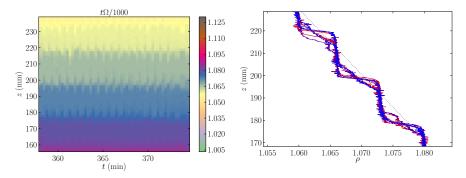
Results


Conclusions

Results

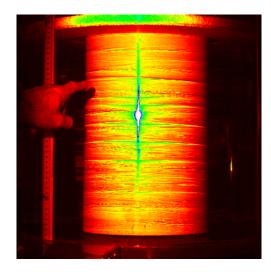
Conclusions

Layering, staircase density profiles



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

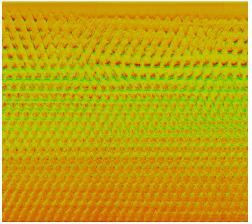
・ロト ・聞ト ・ヨト ・ヨト


э

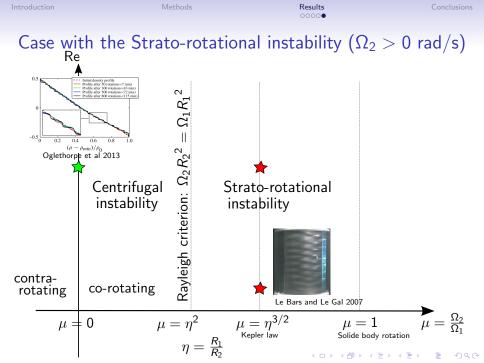
Fine temporal structure in the density profiles

Period $\simeq 50$ s (consistent with scaling law derived by Oglethorpe et al. 2013) $2\pi/\Omega_1\simeq 8.6~{\rm s}$

Horizontal shadowgraph on the inner cylinder



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?


・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Horizontal shadowgraph on the inner cylinder

Time series (intensity as a function of time and height)

 $\mathsf{Period}\simeq 50~\mathsf{s}$ (consistent with scaling law derived by Oglethorpe *et al. 2013*)

Case with the Strato-rotational instability ($\Omega_2 > 0 \text{ rad/s}$)

Shadowgraph

Speed-up: x20

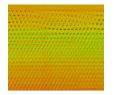
Case with the Strato-rotational instability ($\Omega_2 > 0 \text{ rad/s}$)

Shadowgraph (higher Reynolds number)

Speed-up: x10

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Results


Conclusions

Conclusions and perspectives

- New Taylor-Couette apparatus for studying stratified flows,
- Observation of turbulence produced by the centrifugal instability ($\Omega_2 = 0$) and the strato-rotational instability ($\Omega_2 > 0$),

$$\Omega_2 = 0$$

Turbulence in and between layers

 $\Omega_2 > 0$

Turbulence in a linear stratification

periodic turbulent intrusions with coupling between adjacent layers.

spatio-temporal intermittency and coherent structures.

• We use Digiflow and FluidDyn.

Results 00000 Conclusions

FluidDyn

An open-source Python framework to study fluid dynamics

Goal: good-quality community-driven code

cross-platform, general object-oriented libraries, efficient, documented, good test suite.

Not yet ready but soon!

- Experiments
 - control of data acquisition boards, pumps, probes, motors, etc.
 - automatically organize the data,
 - post-analysis.
- Simulations (mostly pseudo-spectral)
 - Efficient (compiled parts, parallelized with MPI and OpenMP...),
 - 1D and 2D solvers, soon 3D solvers.

http://pythonhosted.org/fluiddyn/