
FluidLab : research on a modern, clean and
open-source code for laboratory experiments

http://fluidlab.readthedocs.org

Pierre Augier

LEGI, CNRS, Université Grenoble Alpes

12 October 2015

http://fluidlab.readthedocs.org


Software to control computers to do lab experiments

control of devices (need drivers)

complex objects (devices working together)

classes of devices and objects

close loop (PID)

temporal loops

tasks to do in parallel, “at the same time”

many experiments to span parameters

save data in readable formats, load and plot it

easily modified

interactive, scripts and GUI
(GUI for the exp 6= GUI to develop)



Diverse possibilities

Labview (proprietary software by National Instruments)

Pros Cons

very adapted to “National
Instruments”

pretty good documentation

somehow easy, in particular for
simple GUI

graphical programming

difficult for many researchers

graphical programming

close source (black box)

cost (on the long range)

very specialized language (analyses
and plots have to be done with
another tool)



Diverse possibilities

Digiflow (house-made proprietary software)

Pros Cons

good for images

scripting language

post-processing

close-source,

bad buggy scripting language

no tests (?)

not portable (only Windows)



Diverse possibilities

Old-school house-made software, often in low level language (C)

Pros Cons

free (like “free beer”)

sometimes open-source

difficult

often quick and dirty

often messy

no documentation

no tests

not portable



Types of instruments, connections and communications

Connections and communication
GPIB, serial (RS232, RS485), USB, Ethernet-RJ45, Firewire...
VISA library (abstraction)

Types of control

with a signal (for example for motor, camera trigger)

with strings (with norms, for example derived from “GPIB
language” + classes of device: IVI, IEC60488)

with normalized protocols (Modbus, CANopen, etc...)

with libraries (often closed): DAQ-NI, Comedi, Firewire, ...



Other approach: clean open-source
FluidLab (part of the FluidDyn project)

Use tools and methods of modern programming:

Python (high-level generalist dynamic language)

object-oriented

distributed revision control tools (Mercurial and Bitbucket)

very easy installation

semi-automatic documentation

unit tests

In building !

Still only alpha versions



Example 1: control a power supply
Own “language” with serial through USB

documentation

interactively and in scripts

temporal loop

http://fluidlab.readthedocs.org/en/latest/examples/loop_with_1instr.html

internal: simple + automatic documentation

http://fluidlab.readthedocs.org/en/latest/examples/loop_with_1instr.html


Example 2: control a motor and its frequency drive
Modbus RTU with RS485 in RJ45!

http://fluidlab.readthedocs.org/en/latest/examples/control_motor.html

driver for the motor

documentation

interactively + scripts + GUI

internal: quite simple + automatic documentation

http://fluidlab.readthedocs.org/en/latest/examples/control_motor.html


Span parameters and auto-organize the data
Most of the time, one experimental apparatus is used for many
experiments with different input parameters.

It is very convenient if the results can be organized automatically
in directories.

Experimental session

from fluidlab.exp import Session

session = Session(path=’Tests’, name=’False_exp’)

http://fluidlab.readthedocs.org/en/latest/examples/session_instru.html

log information

send emails

save and organize data

plot figures

can be reloaded

http://fluidlab.readthedocs.org/en/latest/examples/session_instru.html


Conclusions

FluidDyn: a project for open-science in fluid dynamics with Python

FluidLab: an attempt for a modern, clean and open-source code
for experiments

can already do many things

in building: will do many more!

Future: users, developers, community ?

We need a model for open-software in academics!

Still to be invented!


