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A frictional–collisional model for bedload
transport based on kinetic theory of granular
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In this work, the modelling of collisional bedload transport is investigated with a focus on
the continuum modelling of the granular flow. For this purpose, a frictional–collisional
approach, combining a Coulomb model with the kinetic theory of granular flows, is
developed. The methodology is based on a comparison with coupled fluid–discrete
simulations that the classical kinetic theory model fails to reproduce. This inaccuracy
may be explained by the assumptions of negligible interparticle friction and the absence
of a saltation model in the continuum approach. In order to provide guidelines for the
modelling, the fluctuating energy balance is computed in the discrete simulations and
systematically compared with the kinetic theory laws. Interparticle friction is shown to
affect the radial distribution function and to increase the energy dissipation, in agreement
with previous observations. In addition, a saltation regime is identified, leading to
departure from the viscosity and pseudo-thermal diffusivity laws of the kinetic theory in
the dilute regime. Based on these observations, modifications to account for interparticle
friction are included in the two-fluid model, and the kinetic theory is coupled with a
saltation model. The results show that for inelastic frictional particles, interparticle friction
controls energy dissipation, and the macroscopic behaviour of the granular flow does not
depend on the microscopic particle properties. The proposed model reproduces the μ(I)
rheology in the dense regime of the granular flow. Finally, the model is evaluated with
experiments, showing significant improvements concerning the granular flow modelling.

Key words: sediment transport, multiphase flow, wet granular material

1. Introduction

Sediment transport is one of the main processes that shape river beds and near-shore
zones. It is of major importance for their management and interactions with human
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infrastructures. Modelling the transport of particles by a flowing fluid is a great challenge
for the prediction of the morphological evolution of our environment. According to Berzi
& Fraccarollo (2013), sediment transport regimes may be differentiated using the bed
slope α and the Shields number θ = τb/(�ρ gd), where τb is the fluid bed shear stress,
�ρ = ρp − ρ f is the difference between particle density ρp and fluid density ρ f , g is the
gravity acceleration, and d is the particle diameter. At bed slopes above approximately 5◦,
debris flows are observed for all Shields numbers. Below this value, increasing the Shields
number from just above the critical value, sediment transport takes place as ordinary
bedload corresponding to a single layer of grains moving on top of the fixed sediment bed.
For θ � 0.2, a transition is observed from ordinary bedload to collisional transport with
turbulent suspension at larger Shields numbers. While ordinary bedload may be modelled
using statistical approaches (e.g. Einstein 1937; Ancey 2020), collisional transport and
turbulent suspension are usually modelled in the continuum framework. The challenge in
these approaches lies in the complexity of the particle–particle and turbulence–particle
interactions modelling. Over the last two decades, extensive research has been carried out
on this problem. Most of the time, Reynolds-averaged turbulence modelling has been used,
e.g. mixing length models (e.g. Jenkins & Hanes 1998; Revil-Baudard & Chauchat 2013;
Zhang et al. 2022) or two-equation models such as k–ε or k–ω (e.g. Hsu, Jenkins & Liu
2004; Lee, Low & Chiew 2016; Chauchat et al. 2017; Gonzalez-Ondina, Fraccarollo & Liu
2018). More recently, large eddy simulation has been used to model turbulence in these
two-phase flows (e.g. Cheng et al. 2018; Mathieu et al. 2021). Concerning the granular
stress modelling, two approaches have been used: μ(I) rheology (e.g. Revil-Baudard &
Chauchat 2013; Lee et al. 2016; Chauchat et al. 2017; Zhang et al. 2022) and kinetic
theory of granular flows (e.g. Jenkins & Hanes 1998; Hsu & Liu 2004; Berzi & Jenkins
2011; Cheng et al. 2018). This work investigates the collisional transport regime with a
particular focus on the modelling of the granular part of the flow.

In order to model granular flows in a continuous framework, two approaches are
generally considered, depending on the granular flow regime. Dense granular flows can
be described with the phenomenological μ(I) rheology (GDR MiDi 2004; da Cruz et al.
2005; Pouliquen et al. 2006), which relates the stress state (represented by the shear
to normal stress ratio or effective friction coefficient μ = τ p/Pp) to the kinetic state of
the granular flow (represented by the inertial number I = d |γ̇ |/√Pp/ρp, where d is the
particle diameter, and γ̇ is the granular velocity shear rate). This phenomenological law,
derived by fitting experimental and discrete simulation data, gives predictive results for
dense granular flows, but it fails in the dilute regime. In the bedload configuration, Maurin,
Chauchat & Frey (2016) studied the rheology of monodisperse beds with a coupled
fluid–discrete element method (DEM) (Maurin et al. 2015). Despite the presence of water,
they showed that the dry inertial number is still the controlling parameter. They found that
the μ(I) rheology is valid in the dense part of the granular flow, and extended the classical
laws for dry granular flows to the bedload case as follows:

μ(I) = μs + μ2 − μs

I0/I + 1
, (1.1)

φ(I) = φc

1 + bI
, (1.2)

where μs = 0.35 is the static friction coefficient below which no motion is possible
a priori, μ2 = 0.97, I0 = 0.69, φc = 0.61 and b = 0.31. These laws show reasonable
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collapse for inertial number of the order of unity, but discrepancies are observed at higher
inertial numbers in the dilute regime.

Dilute granular flows are generally described with the kinetic theory (KT) of granular
gases, which is based on a statistical description of the granular flow assuming
binary collisions between particles (Chapman & Cowling 1970). It relies on the
Enskog–Boltzmann equation for the velocity distribution function, and differs from the
classical KT of molecular gases by taking into account the finite size of particles and
energy dissipation at contacts due to inelasticity. It provides hydrodynamics conservation
equations for mass, momentum and granular temperature T . The granular temperature
is defined as the averaged granular fluctuating kinetic energy and is not at all related
to thermal temperature. These equations need closures for the stress tensor, granular
temperature diffusivity and rate of dissipation. In the framework of the KT, they
can be expressed as complex integrals of the particle distribution function (solution
of the Enskog–Boltzmann equation) and of the radial distribution function g0, which
characterizes the degree of spatial correlation between two particles that are about
to collide. Under certain assumptions, analytical expressions for the coefficients may
be obtained by application of the Chapman–Enskog method (Chapman & Cowling
1970), leading to different models. The main difficulty is to express the particle
distribution function. The simplest models were not solving the Enskog–Boltzmann
equation and assumed to be at equilibrium (no temporal nor spatial gradients), leading
to the classical Maxwell distribution function (Savage & Jeffrey 1981; Jenkins &
Savage 1983). Lun et al. (1984) considered a small perturbation around the Maxwell
distribution and obtained constitutive relations for the coefficients that are valid for
weakly dissipative granular flows, i.e. 1 − e2 � 1, with e the restitution coefficient.
More recently, performing expansion to first order in spatial gradients, Garzó & Dufty
(1999) derived relations for the whole range of restitution coefficients. In the bedload
configuration, large spatial variations of all quantities are observed, i.e. exponential
velocity profile, and the latter model is certainly the most relevant for the present
problem.

Considering bedload, and environmental flows over an erodible bed in general, the
difficulty arises from the coexistence of all granular flow regimes with transition from
a dilute granular flow at the bed surface to a dense and quasi-static regime inside the
bed. In terms of continuum modelling strategy, two options are possible: extend the μ(I)
rheology to the dilute regime, or extend the KT to the dense regime. In the dilute regime,
non-local effects are important features of the flow and therefore it seems hardly feasible
to model all regimes with a local rheology. Consequently, the second approach is adopted
hereafter.

There are various reasons to observe departure from the KT even in the dilute part of the
flow. First, natural particles are frictional, while the classical KT models such as the one
of Garzó & Dufty (1999) have been derived for frictionless particles. Interparticle friction
makes it possible to transfer translational kinetic energy into rotational kinetic energy
during collisions, and add another source of energy dissipation by sliding motion. There
have been some attempts to generalize KT to frictional particles, including the resolution
of rotational kinetic energy and a tangential restitution coefficient (Kumaran 2006; Rao &
Nott 2008). This, however, makes models even more complex, and some authors proposed
a more pragmatic approach in which the restitution coefficient is reduced to account for
interparticle friction dissipation (Jenkins & Zhang 2002; Chialvo & Sundaresan 2013).

At the top of the sediment bed, particles are transported by saltation with ballistic
trajectories. Their motion is controlled by gravity and fluid drag force, and is therefore
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out of the scope of the KT (Berzi, Jenkins & Richard 2020). The KT is not expected to
reproduce bedload in the very dilute part of the flow, and saltation is generally taken into
account as an upper boundary condition for the granular phase (Pasini & Jenkins 2005;
Berzi et al. 2020). There have been few attempts to model saltation in the continuous
framework (Jenkins, Cantat & Valance 2010; Jenkins & Valance 2018) and this is still a
challenge for the modelling of geophysical particulate flows.

Finally, the KT is not expected to predict the behaviour of the granular flow in the
dense regime. This is because the motion of particles starts to be correlated and the
molecular chaos assumption breaks down while particles are more concentrated. To model
dense flows, Jenkins (2006, 2007) and Berzi & Jenkins (2011) proposed the introduction
of a correlation length in the dissipation term of the granular temperature equation,
showing good results when comparing with DEM for simple shear flow simulations (Berzi
2014; Berzi & Jenkins 2015). In addition to these considerations, the origin of stresses
changes when going into the bed. While stresses are due to fluctuating motions and
very short collisions in the dilute regime, force chains start to emerge with long-lasting
contacts in the dense part of the bed leading to elastic stresses that cannot be captured
by the KT. However, there exist phenomenological models (Johnson & Jackson 1987)
and micromechanical models (Jenkins & La Ragione 2002) for elastic stresses. Johnson
& Jackson (1987) simply proposed the total stress of the granular assembly to be the
sum of both the elastic and the kinetic-collisional contributions. With this approach,
there have been successful attempts at reproducing laboratory experiments (Hsu et al.
2004) and DEM simulations of dense granular flow (Berzi & Jenkins 2015; Berzi et al.
2020).

The literature review presented above highlights the duality between the μ(I) rheology,
valid in the dense regime, and the KT, a priori valid in the dilute regime. A two-fluid model
based on the KT that would be able to reproduce quantitatively the entire depth structure
of the bedload layer would represent a major contribution for the sediment transport
community. In particular, reproducing the μ(I) rheology with a KT-based model is still an
open question. In order to focus on the granular flow modelling and on the particle–particle
interactions, collisional transport only is considered without any turbulent suspension, and
fluid–particle interactions will be reduced to the simplest ones, i.e. buoyancy and mean
drag forces.

In this context, the aim of the present work is to propose a two-fluid model for bedload
transport using the KT for granular flows and based on the frictional–collisional approach
first proposed by Johnson & Jackson (1987). The model is implemented in SedFoam
(Chauchat et al. 2017), which is an open-source three-dimensional solver based on the
OpenFOAM toolbox. Coupled fluid–DEM simulations will be performed using YADE
(Maurin et al. 2015; Smilauer et al. 2015), and the results will be used as guideline for
the model development and its validation. Keeping in mind the difficulties highlighted
previously, modifications to the classical KT model of Garzó & Dufty (1999), most of them
based on theoretical developments, will be proposed in order to reproduce quantitatively
the discrete simulations.

First the two-phase flow model and the coupled fluid–DEM model are presented (§ 2).
The results of both models will be compared, and some modifications to the Garzó &
Dufty (1999) model will be proposed in § 3 and implemented in SedFoam to reproduce
quantitatively the discrete simulations. Results are discussed in § 4. Finally, conclusions
and perspectives are presented in § 5.
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2. Two-phase flow models for bedload transport

2.1. Two-fluid model
The two-fluid model for sediment transport described in Chauchat et al. (2017), based on
the equations derived by Jackson (2000), is used as a starting point in this paper. Although
it can be used in three-dimensional configurations, the model will be used in this work
only to simulate one-dimensional flows, with all variables depending only on the vertical
axis z. Herein, only the simplified one-dimensional equations will be presented (Chauchat
2018), and the interested reader is referred to Chauchat et al. (2017) for more details on the
three-dimensional model. The code used in the present work is freely available (follow the
link at Bonamy et al. 2023). In the following, superscript f (resp. p) denotes a fluid (resp.
particle) phase quantity. The equations are obtained through a double averaging procedure
described in Appendix A. A first ensemble averaging, denoted as 〈·〉, allows one to obtain
hydrodynamics quantities for both the fluid and particle phases, and a second Favre
averaging, denoted ·̄, provides turbulence filtered equations. The solution of the mass and
momentum conservation equations allows one to predict the fluid and solid phase volume
fractions 〈ε〉 and 〈φ〉 = 1 − 〈ε〉, respectively, as well as the Favre-averaged fluid and

particle phase velocities
〈
u f
〉 f =

(〈
u f

x
〉 f

,
〈
u f

z
〉 f)

and 〈vp〉s =
(〈

v
p
x
〉s
,
〈
v

p
z
〉s)

, respectively.

In the following, unless specified explicitly, the averaging operator symbols are omitted
for readability.

2.1.1. Mass and momentum conservation equations
The mass conservation equations of the fluid and particle phase reduce to

∂ρ f ε

∂t
+ ∂ρ f εu f

z

∂z
= 0, (2.1)

∂ρpφ

∂t
+ ∂ρpφv

p
z

∂z
= 0. (2.2)

The momentum conservation equations in the streamwise direction are

∂ερ f u f
x

∂t
+ ∂u f

z ερ f u f
x

∂z
= ερ f g sin(α) + ∂τ

f
xz

∂z
− nfDx, (2.3)

∂φρpv
p
x

∂t
+ ∂v

p
z φρpv

p
x

∂z
= φρpg sin(α) + ∂τ

p
xz

∂z
+ nfDx, (2.4)

and in the wall-normal direction are

∂ερ f u f
z

∂t
+ ∂u f

z ερ f u f
z

∂z
= −ερ f g cos(α) − ε

∂p f

∂z
− nfDz, (2.5)

∂φρpv
p
z

∂t
+ ∂v

p
z φρpv

p
z

∂z
= −φρpg cos(α) − ∂pp

∂z
− φ

∂p f

∂z
+ nfDz, (2.6)

where p f (resp. pp) is the fluid (resp. particle) pressure, τ
f

xz (resp. τ
p
xz) is the fluid (resp.

particle) shear stress, g = 9.81 m s−2 is the gravity acceleration, α is the bed slope angle,
and nfD = n( fDx, fDz) is the drag force between the fluid and particle phase.
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2.1.2. Fluid phase closures
To solve the fluid equations (2.1), (2.3) and (2.5), it is necessary to have closures for the
fluid phase shear stress τ

f
xz and drag force nfD. The fluid shear stress is the sum of a viscous

shear stress and a turbulent shear stress. The latter stress, also called Reynolds shear stress,
is computed based on an eddy viscosity concept and the total shear stress expressed as

τ f
xz = ρ f ε(ν f + νt)

∂u f
x

∂z
, (2.7)

where ν f is the fluid kinematic viscosity. The turbulent eddy viscosity νt follows a mixing
length approach that depends on the integral of the solid volume fraction to account for
the presence of the particles (Li & Sawamoto 1995):

νt = l2m

∣∣∣∣∣∂u f
x

∂z

∣∣∣∣∣ , lm(z) = κ

∫ z

0
1 − φ(ξ)

φmax
dξ, (2.8a,b)

with κ = 0.41 the von Kármán constant. This simple formulation of mixing length extends
the Prandtl (1926) law for flow inside and over a mobile sediment bed, and has been used
widely for sheet flow and bedload applications (Li & Sawamoto 1995; Dong & Zhang
1999; Revil-Baudard & Chauchat 2013; Maurin et al. 2015).

The drag force is computed as

nfD = φ(1 − φ)K(u f − up), (2.9)

where

K = 0.75CD
ρ f

d
‖u f − up‖ (1 − φ)−ζ−1. (2.10)

The (1 − φ)−ζ−1 term accounts for hindrance effects due to the collective presence
of particles, and the exponent is fixed at ζ = 3.1 (Jenkins & Hanes 1998). The drag
coefficient CD is computed following Dalla Valle (1943) as

CD = C∞
D + 24.4

Rep
, Rep = ‖u f − up‖ d

ν f , (2.11a,b)

where C∞
D = 0.4 is the value of the drag coefficient in the limit of infinite particle

Reynolds number.

2.1.3. Particle phase closures
As already pointed out in the Introduction, granular stresses have two physical origins.
First, particles are subjected to elastic stresses, resulting from enduring contacts, which
do not depend on shear rate. These elastic stresses appear at high volume fractions and
are modelled as a frictional Coulomb-like behaviour. Second, particles are also subjected
to kinetic stresses resulting from transfer of momentum due to fluctuating motions and
to collisions between particles. In order to account for both these stresses in our model,
the approach of Johnson & Jackson (1987), consisting of adding both contributions, is
adopted:

τ p
xz = τ el

xz + τ kin
xz , (2.12)

pp = pel + pkin. (2.13)
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2.1.3.1. Elastic stresses. Models for elastic stresses originate from soil mechanics or
poro-elasticity and are, for most of them, empirical. In this paper, the empirical model
proposed by Johnson & Jackson (1987) is used:

pel =
⎧⎨⎩

0, φ < φrlp,

P0
(φ − φrlp)

3

(φmax − φ)5 , otherwise,
(2.14)

with P0 = 0.05 kg m−1 s−2 the bulk elastic modulus, and φrlp = 0.57 the random loose
packing fraction. The shear stress is then computed following a Coulomb model:

τ el = μspel, (2.15)

where μs is the effective static friction coefficient, below which no motion is possible
a priori. It is expected to depend on the interparticle friction coefficient (Chialvo, Sun
& Sundaresan 2012; Berzi & Vescovi 2015) and is estimated from several datasets of
micromechanical analyses of DEM simulations (see Appendix B). Note that the elastic
pressure exists only for volume fraction larger than φrlp, and the elastic stresses are
therefore restricted to the very dense part of the granular flow.

2.1.3.2. Kinetic stresses. As already mentioned, the kinetic stresses are computed in
the framework of the KT. One needs to solve an energy balance equation for the particle
phase in addition to the set of equations (2.2), (2.4) and (2.6). For multiphase flows, the
rate of change of particle fluctuating kinetic energy can be written as (Ding & Gidaspow
1990)

3
2

(
∂ρpφT

∂t
+ ∂up

z ρ
pφT

∂z

)
= τ kin

xz
∂v

p
x

∂z
+ ∂q

∂z
+ Γ + Jint, (2.16)

where T = 1/3
〈
v

p′
i v

p′
i
〉p

is the granular temperature. The first term on the right-hand side
is a production term of granular temperature. The second term on the right-hand side is a
diffusion term with q the granular temperature flux:

q = −κ
∂T
∂z

− κφ

∂φ

∂z
. (2.17)

In the present configuration, and despite the sharp transition from dilute to dense granular
flow at the bed interface, the contribution of the volume fraction gradient term to the total
flux has been observed to be negligible. It is therefore not accounted for in the present
model, and the granular temperature flux reduces to

q = −κ
∂T
∂z

. (2.18)

The third term on the right-hand side represents the dissipation of granular temperature
due to contact inelasticity. The last term is specific to multiphase flows and represents
the work done by the drag force due to fluctuating motion. In order to close the granular
temperature equation, the Garzó & Dufty (1999) model is used as a baseline. It has been
derived for inelastic hard spheres to first order in the spatial gradients. The transport
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Garzó & Dufty (1999) model Proposed model

g0(φ) = 2 − φ

2(1 − φ)3 + aφ2

(φmax − φ)3/2 g0,μp (φ) = 2 − φ

2(1 − φ)3 + a(μp) φ2

(φmax − φ)3/2

F1(φ) = φ (1 + 2(1 + e)φ g0(φ)) —

F2(φ) = η∗
k + η∗

c + η∗
b F2(φ) = η∗

saltη
∗
k

η∗
salt + η∗

k
+ η∗

c + η∗
b

F3(φ) = κ∗
k + κ∗

c + κ∗
b F3(φ) = κ∗

saltκ
∗
k

κ∗
salt + κ∗

k
+ κ∗

c + κ∗
b

F4(φ) = 12√
π

(1 − e2)φ2 g0(φ) F′
4(φ) = 12√

π
(1 − e2

eff )φ
2 g0,μp (φ)

— eeff = e − f (μp)

η∗
k = 5

√
π

96
1 − 2/5(1 + e)(1 − 3e)φ g0(φ)(

1 − 1/4(1 − e)2 − 5/24(1 − e2)
)

g0(φ)
—

— η∗
salt = ρpφ

√
T

c0dK

η∗
c = 4

5
(1 + e)φ g0(φ) η∗

k —

η∗
b = 4

5
√

π
(1 + e)φ2 g0(φ) —

κ∗
k = 225

√
π

576
[1 + 3/5(1 + e)2(2e − 1)φ g0(φ)]
(1 − 7/16(1 − e))(1 + e) g0(φ)

—

— κ∗
salt = η∗

salt
0.5

κ∗
c = 6

5
(1 + e)φ g0(φ) κ∗

k —

κ∗
b = 2√

π
(1 + e)φ2 g0(φ) —

Table 1. Expression of the coefficients in the constitutive relations of the kinetic theory given by the Garzó &
Dufty (1999) model (left column) and the proposed model (right column).

coefficients are expressed as functions of the granular temperature as

pkin = ρp F1(φ) T, (2.19)

ηkin = ρpd F2(φ)
√

T, (2.20)

κ = ρpd F3(φ)
√

T, (2.21)

Γ = ρp/d F4(φ) T3/2, (2.22)

where ηkin = τ kin
xz /|γ̇ | is the viscosity associated with the kinetic stress. The expressions

for F1, F2, F3 and F4 are reported in the left column of table 1 and depend on the restitution
coefficient e. Note that the dimensionless viscosity and diffusivity are expressed as the sum
of kinetic (due to fluctuations) collisional and bulk contributions.
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In these relations, a key parameter is the radial distribution function g0(φ), which
characterizes the degree of spatial correlation of two particles that are about to collide. It
is therefore expected that g0 is 1 in the dilute regime (no spatial correlation) and diverges
when φ approaches φmax (full spatial correlations). The first functional form has been
proposed by Carnahan & Starling (1969), as g0(φ) = (2 − φ)/(2(1 − φ)3). It gives very
good results for low values of volume fraction but does not diverge in the dense limit.
To correct this behaviour, other functional forms have been proposed theoretically (Ma &
Ahmadi 1986; Torquato 1995) and empirically (Lun & Savage 1986; Chialvo & Sundaresan
2013; Vescovi et al. 2014). In the following, the form proposed by Chialvo & Sundaresan
(2013), based on discrete element simulations of simple shear flows, is adopted:

g0(φ) = 2 − φ

2(1 − φ)3 + aφ2

(φmax − φ)3/2 , (2.23)

where a = 0.58 is an empirical coefficient. This expression has the advantage of matching
the Carnahan & Starling (1969) function for low volume fraction and diverging close to
φmax.

The last term for which a closure is required is Jint. It corresponds to the work done
by the drag force due to fluctuating particle motion. Assuming that the drag is linear in
relative velocity (i.e. K ∼ const.), it can be expressed as (Ding & Gidaspow 1990; Fox
2014)

Jint = φ(1 − φ)K
(〈

uf ′
i v

p′
i
〉p − 3T

)
. (2.24)

The second term in the right-hand set of parentheses of (2.24) is a dissipation term. The
first term in the right-hand set of parentheses is a source term representing a transfer of
fluctuating energy from the fluid to particles through turbulence. It depends on the degree
of correlation between fluctuating velocities of both phases, and typically varies from 0
(uncorrelated motions) to 2k (fully correlated motions), where k is the fluid fluctuating
kinetic energy (Danon, Wolfshtein & Hetsroni 1977; Chen & Wood 1985). In the DEM
model that is used in this study (see § 2.2), no fluid velocity fluctuations are computed and
there is therefore no correlation between the fluid and granular phase fluctuation velocities.
This is equivalent to considering that particles are very inertial and that their motion is
not at all influenced by the turbulent structures of the fluid flow. The drag term therefore
simplifies as

Jint = −φ(1 − φ)K × 3T, (2.25)

and it represents the dissipation into heat of granular temperature due to the drag force.

2.1.4. Numerical implementation
The numerical implementation is described fully in Chauchat et al. (2017), consisting of
a total variation diminution central scheme, with an ‘Euler implicit’ first-order scheme
for time derivatives, a ‘Gauss linear’ scheme for spatial gradient operators, a ‘Gauss
limitedLinear’ scheme for divergence operators, and a ‘Gauss linear corrected’ scheme
for Laplacian operators. The details of these schemes can be found in the OpenFOAM
documentation, and they are all second order in space. The boundary conditions are set
to ‘cyclic’ in the streamwise direction and ‘empty’ in the spanwise direction. At the
top boundary, the pressure of both phases is fixed at 0, and a zero gradient is imposed
on all other fields. The bottom boundary condition is set to ‘fixedFluxPressure’ for the
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pressure and to ‘noslip’ for the velocities. The CFL is fixed at 0.1, with maximal time step
�tmax = 10−3 s. The number of grid points is chosen such that the spatial discretization
verifies dz ∼ d/4. This corresponds to 120 cells for the cases such that θ � 0.6, and to 200
cells for the higher Shields numbers.

2.2. Euler–Lagrange model
The continuum two-fluid model will be tested against coupled fluid–DEM simulations.
This is a three-dimensional DEM model, based on the open-source code YADE (Smilauer
et al. 2015), coupled with a one-dimensional turbulent fluid flow model. It is presented
in Maurin et al. (2015) and has been validated with experiments (Frey 2014). It will be
presented briefly herein, but the interested reader is referred to Maurin et al. (2015) and
Maurin (2015) for a complete description.

Frictional spheres of density ρp and diameter d submitted to a gravity acceleration g =
9.81 m s−2 are considered. A linear spring–dashpot model (Schwager & Poschel 2007) is
considered. It is composed of a spring of stiffness kn, computed to stay in the rigid limit
of grains (Roux & Combe 2002), in parallel with a viscous damper of coefficient cn in
the normal direction, and a spring of stiffness ks = kn associated with a slider of friction
coefficient μp in the tangential direction. The normal stiffness, in parallel with the viscous
damper, defines a normal restitution coefficient e. In addition, each particle is submitted to
a buoyancy force and a fluid drag force. The same drag model as for the two-fluid model
is considered (see (2.9) and (2.11a,b)), except that the velocity difference depends on the
particle instantaneous velocity instead of the particle phase averaged velocity.

For the fluid phase, a one-dimensional vertical model is used, in which the fluid velocity
is a function of only the wall-normal component z, and is aligned with the streamwise
direction. This is the exact same fluid model as presented previously for the two-phase
flow model (2.3). The only difference lies in the drag interaction term. Indeed, as a fluid
drag force applies to each individual particle, it is computed as the average momentum
transferred by the fluid to the particles through the drag force:

n 〈fD〉p = 3ρ f

4d
φ(1 − φ)−ζ

〈
CD ‖u f − up‖ (u f − up)

〉p
, (2.26)

where it is recalled that 〈·〉p denotes the solid phase average (see Appendix A for
definition).

Babic (1997) and Goldhirsch (2010) proposed a rigorous procedure to compute the DEM
granular stresses σ p. Later, Pähtz et al. (2015) extended this formalism to the computation
of the granular temperature flux q, dissipation during collision Γ , and drag dissipation
Jint. For the same weighting function as previously, they are expressed as

σ
p
ij (z) = −ρpφ

〈
v

p′
i v

p′
j

〉p − 1
V

∑
c

f c
i bc

j , (2.27)

q(z) = −1
2

ρpφ
〈
vp′

z v
p′
i v

p′
i

〉p − 1
V

∑
c

f c
i v

p
i bc

z, (2.28)

Γ (z) = − 1
2V

∑
p,q|zp∈[z−dz/2,z+dz/2]

f c
i (v

p
i − v

q
i ), (2.29)

Jint = n
〈
fDiv

p′
i

〉p
, (2.30)
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hw

Nd

z y
x

α

Figure 1. Numerical set-up of the DEM simulations: N layers of particles are deposited by gravity above a
rough bed made of fixed particles. The fluid free surface is set to Hf = Nd + hw.

where the sums are performed over the ensemble of particles p, particles q in contact
with p, and contacts c. Here, f c is the interaction force at contact c applied on particle
p by particle q, and bc = xq − xp is the branch vector. In these expressions, the Einstein
summation has been used. Note that the granular stress tensor and granular temperature
flux are sums of fluctuating (similar to a Reynolds stress for a fluid) and contact
contributions. The obtained fields are ensemble-averaged quantities, which can further
be Favre-averaged for comparison with the continuum two-fluid model.

3. Results

In this section, coupled fluid–discrete simulations will be compared with two-fluid
simulations. The observed discrepancies will be investigated physically, and corrections to
the KT model will be proposed in order to reproduce quantitatively the DEM simulations
with the two-fluid model.

3.1. Euler–Lagrange simulation results
The numerical set-up is presented in figure 1. Particles of diameter d and density ρp

are initially deposited by gravity over a rough bed made of fixed particles. Particles are
immersed in a fluid of density ρ f = 1000 kg m−3, and the particle to fluid density ratio
is denoted r = ρp/ρ f . The free surface is fixed at Hf = Hbed + hw, where Hbed = 12.5d
represents the bed height at rest, and hw represents the water depth. The slope is fixed
at sin(α) = 5 % (2.85◦). This defines the Shields number as θ = ρ f ghw sin(α)/[(ρp −
ρ f )gd]. At initial time, the fluid flows by gravity and sets particles into motion. After a
short transient, during which fluid and particles are accelerating, a steady state takes place
at transport equilibrium.

A set of simulations has been performed and is summarized in table 2. A reference case
is considered for which θ = 0.6, ρp = 2500 kg m−3, d = 6 mm, μp = 0.4 and e = 0.7.
Around this case, each parameter has been varied independently from the others – Shields
number from θ = 0.2, at the transition between ordinary bedload and collisional transport,
until θ = 1, corresponding to intense bedload transport, ρp from 1375 to 4000 kg m−3, d
from 3 to 9 mm, interparticle friction μp from 0 to 1.5, and restitution coefficient from
e = 0.3 to e = 0.9. The objectives of the present work being to investigate collisional
bedload transport without turbulence–particle interactions, it has been verified that these
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Id θ r = ρp/ρ f d (mm) μp e hw/d Hf /d St S

1 0.6 2.5 6 0.4 0.7 6 18.5 10 603 2.56
2 0.2 2.5 6 0.4 0.7 6 18.5 3046 1.27
3 0.4 2.5 6 0.4 0.7 6 18.5 6495 1.92
4 0.8 2.5 6 0.4 0.7 6 18.5 14 732 3.08
5 1 2.5 6 0.4 0.7 6 18.5 18 792 3.51
6 0.6 1.75 6 0.4 0.7 9 21.5 5574 2.54
7 0.6 3.25 6 0.4 0.7 27 39.5 15 866 2.50
8 0.6 4 6 0.4 0.7 36 48.5 21 818 2.48
9 0.6 2.5 6 0 0.7 6 18.5 13 542 3.27
10 0.6 2.5 6 0.1 0.7 6 18.5 11 878 2.87
11 0.6 2.5 6 0.2 0.7 6 18.5 11 155 2.68
12 0.6 2.5 6 0.6 0.7 6 18.5 10 445 2.52
13 0.6 2.5 6 0.8 0.7 6 18.5 10 440 2.52
14 0.6 2.5 6 1.5 0.7 6 18.5 10 567 2.55
15 0.6 2.5 6 0.4 0.3 6 18.5 10 026 2.42
16 0.6 2.5 6 0.4 0.5 6 18.5 10 220 2.47
17 0.6 2.5 6 0.4 0.9 6 18.5 11 217 2.71
18 0.6 2.5 3 0.4 0.7 6 18.5 3604 2.46
19 0.6 2.5 9 0.4 0.7 6 18.5 19 568 2.57

Table 2. Physical parameters for each configuration: Shields number, particle to fluid density ratio, particle
diameter, interparticle friction coefficient, restitution coefficient, fluid depth, free surface position, Stokes
number and suspension number.

simulations indeed correspond to this transport regime. Following Finn & Li (2016), the
suspension number, characterizing the competition between particle settling and turbulent
suspension, is in the range S = ws/u∗ ∼ 1–4, and the Stokes number, comparing the
particle time scale to the turbulent time scale, is always larger St = τp/τk  103 (see
table 2). Therefore, the present configuration corresponds to bedload transport regime
without suspension in which particles are inertial and not influenced by fluid turbulence.

Figures 2(a) and 2(b) show the profiles of volume fraction, and particle and
fluid velocities for the reference case. The sediment phase shows a very complex
phenomenology, with continuous transition from a pure fluid phase (z > 17d) to a
quasi-static creeping regime (z < 8d). This transition zone is called the bedload layer,
in which most of the transport is taking place. At the same time, both the fluid and particle
velocities decrease when going down into the bed. The quasi-static regime, below z < 8d,
is characterized by a roughly constant maximal packing fraction φ = φmax and very slow
fluid and granular motions with exponentially decreasing velocity profiles with depth
(Houssais et al. 2015; Chassagne et al. 2020b; Rousseau et al. 2021). The quasi-static
regime has a negligible contribution to the overall transport (Chassagne et al. 2020a) and
will be neglected in this work.

Figure 2(c) shows the profiles of granular temperature budget (2.16): production,
diffusion, dissipation through collisions and drag dissipation term. At steady state, the
left-hand side of the granular temperature equation (2.16) vanishes and the production
of temperature should be balanced by diffusion, contact dissipation and drag dissipation.
As can be observed in figure 1(c), the black dashed line representing the sum of these
three terms is not superimposed on the production term, indicating that the balance is
not completely closed. Pähtz et al. (2015) had the same issue in their DEM simulations
and attributed this flaw to the dissipation term Γ due to the lack of scale separation in
the averaging procedure, i.e. the vertical discretization dz = d/30 � d. For this reason,
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Figure 2. Fluid–DEM simulation results for the reference case θ = 0.6, ρp/ρ f = 2.5, d = 6 mm, μp = 0.4
and e = 0.7: (a) volume fraction profile, (b) dimensionless particle and fluid velocity profiles, and (c) granular
temperature balance, in Pa s−1.
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Figure 3. Comparison between DEM (symbols) and two-phase flow results with initial model (solid lines) for
different Shields numbers (simulation Ids 1–5): (a) volume fraction profiles, (b) dimensionless particle velocity
and transport (inset) profiles, and (c) dimensionless granular temperature.

in the following, the dissipation term will be computed as the residual of the granular
temperature balance equation: Γ = −τ

p
xzγ̇ − ∂q/∂z − Jint.

3.2. Direct comparison with the two-fluid model
The two-fluid model can now be compared with the results of the coupled fluid–DEM
model. The fluid equations being the same in both models, a particular focus will be given
to the granular behaviour of the particle bed. The same set-up as presented in § 3.1 is
simulated using the two-fluid model, with parameters reported in table 2.

Figure 3 compares, for all Shields numbers, the profiles of volume fraction, particle
velocity and granular temperature computed with the DEM (symbols) and with the
two-fluid model (solid lines). The two-fluid model mispredicts the shape of the
volume fraction profile and overestimates strongly the particle velocity and the granular
temperature for all Shields numbers. The bed flows deeper in the two-fluid simulations
than in the DEM results, and a plateau of velocity in the dilute part of the granular
flow is predicted that is not observed in the DEM results. As a consequence, the width
of the bedload layer is larger in the continuum model than in the DEM (see inset of
figure 3b). Similarly, the granular temperature is overestimated by the continuum model, in
particular inside the granular bed, suggesting that granular fluctuating energy dissipation
is underestimated in the continuum simulations. As discussed in the Introduction, this is
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because particles are frictional and dissipate more energy than predicted in the frictionless
KT model.

In order to improve the results of the two-fluid model, additional physical mechanisms
have to be accounted for. In particular, the Garzó & Dufty (1999) model does not account
for interparticle friction, while, as will be shown hereafter, it plays an important role in
the dynamics of the granular flow. In addition, the departure between the models in the
dilute part of the granular flow indicates that saltation also plays an important role in
the dynamics of the flow. In the following, the DEM results will be used as a guideline
to develop a two-phase flow model based on the KT that accounts for both frictional
interactions and saltation.

3.3. Influence of interparticle friction
As stated in the Introduction, interparticle friction is expected to have a strong impact on
the flow dynamics. First, it influences the geometrical packing structure of the granular
flow (da Cruz et al. 2005; Chialvo et al. 2012; Berzi & Fraccarollo 2015) modifying the
radial distribution function g0(φ) (Chialvo & Sundaresan 2013; Berzi & Vescovi 2015).
Second, it introduces another source of dissipation at contact in addition to inelasticity.
These two aspects, playing an important role in the KT, have been explored in simple
shear flow configurations. A set of discrete simulations has been performed, in which the
interparticle friction coefficient has been varied from μp = 0 to μp = 1.5, in order to study
and parametrize its impact in the more complex bedload configuration.

The radial distribution function is a key parameter of the KT. From the DEM
simulations, it can be estimated by reversing the granular pressure law (2.19) as

g0(φ) = 1
2φ(1 + e)

(
pkin

ρpφT
− 1
)

. (3.1)

In the DEM simulations, it is not possible to isolate the kinetic-collisional contribution
from the elastic one in the granular pressure. The radial distribution function is
therefore computed in (3.1) based on the total pressure. The elastic pressure is,
however, predominant only for volume fraction very close to the random close packing
φmax ∼ 0.635, and vanishes below φrcp = 0.57. It is assumed that assimilating the
kinetic-collisional pressure to the total pressure has a negligible effect on the results.
Figure 4(a) shows the computed radial distribution function in the DEM simulations
(symbols). As expected, the data show an impact of interparticle friction on the radial
distribution function. Similarly to the observations of da Cruz et al. (2005), Chialvo
et al. (2012) and Chialvo & Sundaresan (2013) in shear cell numerical simulations, the
radial distribution function starts to diverge at lower values of volume fraction when
μp increases. This corresponds to a decrease of the jamming volume fraction with
interparticle friction coefficient at which a transition between inertial and quasi-static
regime occurs (Chialvo et al. 2012). This behaviour saturates for μp � 0.6, after which
a very small influence is observed.

The expression of the radial distribution function (2.23) (blue solid line) proposed by
Chialvo & Sundaresan (2013) for frictionless particles is in perfect agreement with the
present frictionless simulation (blue circles). This is quite remarkable because (2.23) has
been obtained in a very different configuration – dry granular flow in simple shear cell
– showing that our DEM simulations are in line with the literature on this point. Vescovi
et al. (2014) proposed another expression for the radial distribution function for frictionless
spheres that is almost superimposed on (2.23) (not shown in figure 4(a) for clarity).
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Figure 4. (a) Radial distribution function computed in the DEM simulations (symbols, simulation Ids 1 and
9–14) and with (3.2) (solid lines) for different values of interparticle friction. (b) Impact of interparticle friction
on coefficient a(μp) of (3.2) measured in the DEM simulations (black crosses) and proposed empirical fit (3.3)
(solid line).

To account for the effect of interparticle friction on the radial distribution function,
Chialvo & Sundaresan (2013) suggested letting the critical packing fraction depend on
interparticle friction in (2.23). However, this is not appropriate in the present configuration
because in our model, the elastic stresses become more important than the kinetic ones at
high volume fraction. The granular flow ultimately reaches the same maximum packing
fraction (φmax ∼ 0.635) in all the simulations, whatever the value of the interparticle
friction. Reducing the maximum packing fraction in the radial distribution function leads
to numerical instabilities. Instead, it is proposed here to let the coefficient a in (2.23)
depend on μp:

g0,μp(φ) = 2 − φ

2(1 − φ)3 + a(μp) φ2

(φmax − φ)3/2 . (3.2)

Figure 4(b) shows the measured a(μp) coefficient from the discrete simulations (black
crosses). A hyperbolic tangent parametrization, reproducing the data perfectly, is
proposed. It captures the strong variation at low interparticle friction and the saturation
for larger values:

a(μp) = a0 + (amax − a0) tanh(μp/δ), (3.3)

with a0 = 0.58 to recover the radial distribution function proposed by Chialvo &
Sundaresan (2013) for frictionless spheres, amax = 3.70 and δ = 0.54. The obtained radial
distribution function is compared with the ones measured in the DEM functions in
figure 4(a) (solid lines), showing very good agreements for the whole range of volume
fractions. The radial distribution function (3.2) makes it possible to mimic the impact of
interparticle friction on the jamming volume fraction without modifying the maximum
packing fraction in the KT model.

The previous discussion has shown that interparticle friction impacts strongly the
micromechanics of the granular flow. It is also expected to influence granular temperature
dissipation. Indeed, when particles interact, energy is dissipated through inelasticity and
friction. Figure 5 shows the contact dissipation computed with the DEM simulation
(symbols) for different values of interparticle friction coefficients. As expected, dissipation

964 A27-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

33
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.335


R. Chassagne, C. Bonamy and J. Chauchat

0 0.1 0.2 0.3 0.4 0.5 0.6

μp = 0
μp = 0.1
μp = 0.2
μp = 0.4
μp = 0.6
μp = 0.8
μp = 1.5

0 0.1 0.2 0.3 0.4 0.5 0.6
10−3

10−2

10−1

100

101

102

103

F 4
(φ

) 
=

 Γ
/(
ρ

p /
dT

3
/2

)

0

20

40

60

80

100

0.3 0.4 0.5 0.6

50

80
70

60

40

30
20

10
0

φ φ

(b)(a)

Figure 5. Dimensionless contact dissipation of granular temperature computed in the DEM simulations
(symbols, simulation Ids 1 and 9–14) and predicted by the KT theory taking into account the effect of
interparticle friction (solid lines). (a) Semi-log scale. (b) Linear scale; in the inset, solid lines correspond
to the predicted dimensionless dissipation when the effect of interparticle friction is taken into account only in
the radial distribution function.

increases with interparticle friction, and, similarly to the radial distribution function, it
saturates for μp > 0.4.

The Garzó & Dufty (1999) model was derived for frictionless spheres and therefore
does not account for this second source of dissipation. The rate of dissipation predicted by
the KT is given in table 1 (F4 coefficient). It is plotted in the solid blue line in figure 5. It
predicts very well the contact dissipation of frictionless spheres (blue symbols) for volume
fraction smaller than 0.55 approximately, but fails above this value. Accounting for the
impact of interparticle friction on the radial distribution function in the Garzó & Dufty
(1999) dissipation law is not sufficient to capture the computed dissipation of frictional
particles (see inset of figure 5b). To account for the additional source of dissipation by
interparticle friction, Jenkins & Zhang (2002) proposed to treat it similarly to inelasticity
by a modification of the restitution coefficient eeff (μ

p) � e, where eeff is the effective
restitution coefficient. With asymptotical development at small μp, Jenkins & Zhang
(2002) proposed the following theoretical derivation:

eeff = e − f (μp) = e − 1
2

(
a1 − a2

b1

b2

)
. (3.4)

Expressions for coefficients a1, a2, b1 and b2 are given in Appendix C and depend on μp

and e. The modified dimensionless dissipation coefficient F′
4 = F4(1 − e2

eff )/(1 − e2) is
plotted in solid coloured lines in figure 5. Even if the expression of effective restitution
coefficient by Jenkins & Zhang (2002) was derived in the limit of small μp, it reproduces
almost perfectly the DEM simulations, even at large μp and in particular the saturation
of dissipation. This is because the effective restitution coefficient derived by Jenkins &
Zhang (2002) also saturates at large interparticle friction coefficient (see figure 16 of
Appendix C).

3.4. Accounting for the saltation regime in the continuum framework
The results presented above show that, as expected, interparticle friction influences the
radial distribution function and the rate of granular temperature dissipation at contact. In
bedload transport, a saltation regime is also present at the top of the bed, i.e. at small
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volume fraction. This regime is controlled by the fluid drag force and therefore cannot
be reproduced by the KT. To deal with this difficulty, saltation is usually treated as a top
boundary condition (Pasini & Jenkins 2005; Berzi et al. 2020). In the present two-phase
flow model, it is, however, necessary to model saltation in a continuum framework. Based
on the law of motion of a single saltating particle, submitted to only gravity and a fluid
drag force, and averaging over an ensemble of particles, Jenkins et al. (2010) and Jenkins
& Valance (2018) derived a theoretical continuum framework for saltation with analytical
expression for the granular viscosity, which, with the present notation, can be written as

ηsalt = ρppkin

c0K
, (3.5)

where K is the fluid drag force coefficient defined in (2.9), and c0 is a constant that should
take into account all the correlations neglected during the averaging procedure. Jenkins
et al. (2010) proposed c0 = 20 for aeolian saltation, while the present DEM simulations
suggest c0 = 5 for subaqueous saltation. The saltation regime takes place at the top of
the bed, where the volume fraction is small and the granular pressure simplifies to its
fluctuating part pkin ∼ ρpφT , leading to the dimensionless viscosity law

ηsalt∗ = ηsalt

ρpd
√

T
= ρpφ

√
T

c0dK
= ρp

ρ f
4

3c0

φ
√

T
CD ‖u f − up‖ . (3.6)

Figure 6(a) shows the dimensionless viscosity computed in the DEM simulations
(symbols) for different particle to fluid density ratios together with the Garzó & Dufty
(1999) coefficient (F2 in table 1, dashed black line). The theoretical law reproduces
perfectly the DEM data for intermediate to high volume fractions, but, as expected, not
for φ < 0.2. At rather low volume fraction, the viscosity exhibits a linear dependency on
the volume fraction (the figure is in semi-log) as predicted by (3.6). This shows that there
is a transition from a saltating regime to a kinetic regime. Such deviation of the viscosity
law compared to the KT of Garzó & Dufty (1999) was already reported in Tsao & Koch
(1995) and Sangani et al. (1996) with simulations of sheared dilute gas–solid suspensions,
indicating that this is probably a general trend in fluid–particle applications. A way to
account for this transition is to average harmonically the contributions of viscosity due to
saltation and to the fluctuating part of the kinetic-collisional model as

η∗ = 1
1

ηk∗ + 1
ηsalt∗

+ ηc∗ + ηb∗. (3.7)

The result of (3.7) is plotted in the solid black line in figure 6(a), and it exhibits a very
good match with the DEM data. This equation allows one to account for saltation at low
volume fraction and to recover the KT expressions for φ > 0.2.

To justify the adopted form of viscosity coefficient, it is compared with the approach
of Garzó et al. (2012) and González & Garzó (2019). In these works, the authors
accounted for fluid–particle interactions in the Enskog kinetic equation and derived new
KT coefficients modified by fluid–particle forces, in particular drag force. Their results
show that the kinetic contribution of the viscosity is affected by the fluid drag force,
which reads, using the present notation (in (2.1) of Garzó et al. (2012), by identification
to the present configuration, the mean drag and thermal drag terms are the same, β =
γ = (1 − φ)(πd3/6)K, and as no stochastic model is adopted, B = 0; the viscosity term
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Figure 6. (a) Dimensionless viscosity and (b) granular temperature flux coefficient computed in the DEM
simulations for different particle to fluid density ratios r (symbols, simulation Ids 1 and 6–8), and predicted by
the classical KT theory (dashed black line) and with (3.7) and (3.10) for r = 2.5 (solid black line).

(3.7) is then given by (7.7) of Garzó et al. (2012), neglecting the small terms proportional
to a2),

1
ηk∗

Garzo2012
= 1

ηk∗ + 1

c1
ρpφ

√
T

dK

, (3.8)

in which the saltation viscosity proposed by Jenkins et al. (2010) naturally comes out and
where c1 = (1 − 2/5(1 + e)(1 − 3e)φg0)/(1 − φ) reduces to c1 ∼ 1 in the dilute regime.
This justifies even further that the behaviour observed in the dilute part of the granular
flow corresponds to a regime controlled by the fluid–particle interactions leading in the
present configuration to a saltation regime.

Contrary to the predictions of (3.6), the viscosity law measured in the DEM simulations
does not show any dependency with the particle to fluid density ratio (different symbols
of figure 6(a) all superimposed). This is possibly due to the simplicity of the saltation
model, for which many assumptions have been made (non-interacting saltating particles,
fixed bed, correlations neglected during averaging procedure, etc.). Despite this apparent
contradiction between the saltation theoretical model and the DEM simulations, it will be
shown that (3.7) with (3.6) reproduces very well the transition towards the saltation regime
for the whole range of particle to fluid density ratio.

The granular temperature flux coefficient, plotted in figure 6(b), shows a similar trend,
with signature of the saltation regime at low volume fraction, not captured by the Garzó &
Dufty (1999) coefficient (F3 in table 1, dashed black line). The saltation model of Jenkins
et al. (2010), however, does not provide an analytical expression for this coefficient. Taking
inspiration from classical turbulence models, in which the turbulent kinetic energy flux
coefficient is taken proportional to the turbulent eddy viscosity, it is assumed that

κsalt∗ = ηsalt∗

σ
, (3.9)

where σ = 0.5 is an empirical constant adjusted on the DEM simulations. Similarly to the
viscosity law, the contribution of saltation is accounted for in the granular temperature flux
coefficient as

κ∗ = κsalt∗κk∗

κsalt∗ + κk∗ + κc∗ + κb∗. (3.10)
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Figure 7. Dimensionless granular temperature dissipation by the drag force computed in the DEM simulations
(symbols, simulation Ids 1 and 9–14) compared with (2.25) (dashed black line) and with corrected model (3.13)
(solid black line).

The result is plotted as the solid black line in figure 6(b), capturing correctly the signature
of the saltation regime on the pseudo-heat-flux coefficient.

3.5. Dissipation by the drag force

The work done by the drag force due to granular fluctuating motion Jint = n
〈
fDiv

p′
i

〉s
is

plotted in figure 7 for different values of interparticle friction. As expected from the Ding
& Gidaspow (1990) closure (2.25), no dependency on interparticle friction is observed, nor
on any other parameter (not shown for readability). However, (2.25), shown as the dashed
black line, underestimates the effective dissipation of fluctuating energy by the drag force
for the whole range of volume fraction. This is because a linear drag force was assumed
to derive closure (2.25), while it is not the case in this configuration (or in any turbulent
flow application). To understand how the quadratic nature of the drag force influences the
dissipation of fluctuating energy, let us replace fDi by the drag force (2.9) in Jint:

Jint = n
〈
fDiv

p′
i

〉p
= 3

4
φρ f (1 − φ)−ζ

d

〈
CD ‖u f − vp‖ (u f

i − v
p
i )v

p′
i

〉p
, (3.11)

so

Jint ∝
〈
CD ‖u f − vp‖ (u f

i − v
p
i )v

p′
i

〉p
. (3.12)

In order to provide a closure, it is necessary to discuss the term inside the averaging
operator 〈·〉p

. Indeed, depending on the value of the particle Reynolds number Rep,
CD ‖u f − vp‖ (u f

i − v
p
i ) can be linear with the relative velocity (laminar regime),

quadratic (turbulent regime), or in between. While it is usually assumed that the drag is
linear (Ding & Gidaspow 1990; Fox 2014), this assumption does not hold in the turbulent
bedload transport configuration. Indeed, the particle Reynolds number ranges between
Rep ∼ 100 in the bed to Rep ∼ 2500 at the bed surface. The drag force is therefore
quadratic at the surface and in a transitional regime in the bed. Splitting the particle
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velocity into mean and fluctuating components, and performing a Taylor expansion to first
order with respect to the mean values, the following expression of the granular temperature
dissipation through the drag force is obtained (see Appendix D):

Jint ∼ −φ(1 − φ)K
(

3 + 2
C∞

D
CD

)
T, (3.13)

where C∞
D is the value of the drag coefficient for an infinite particle Reynolds number.

Note that this term is negative and corresponds to a loss of fluctuating energy for the
granular phase. The term 2C∞

D /CD represents an additional source of dissipation due to the
quadratic nature of the drag force. In order to derive this expression, it has been assumed

that
∥∥∥∥〈u f

〉 f − 〈vp〉p
∥∥∥∥ ∼

∣∣∣∣∣〈u f
x

〉 f
− 〈vp

x
〉p∣∣∣∣∣ and that

〈
v

p′
x v

p′
x

〉p
∼ 2T . These assumptions are

specific to configurations with a preferential shearing direction with anisotropic velocity
fluctuations. However, computations presented in Appendix D can be adapted easily to
other cases. The corrected closure (3.13) is plotted in coloured solid lines and compared
with DEM data in figure 7. It improves quantitatively the prediction of dissipated energy. It
shows very good agreement with the DEM in the dilute regime, but underestimates slightly
the drag dissipation at high volume fractions. In this limit, the influence of the drag is,
however, very small, and this underestimation should not affect too much the balance of
granular temperature.

3.6. Evaluation of the proposed two-fluid model
The results presented in the previous subsections allow us to propose a two-fluid model
for bedload transport based on the Garzó & Dufty (1999) KT model that accounts for
the effects of interparticle friction and for the saltation regime. The model closures are
summarized in the right-hand column of table 1. The model has been implemented in
SedFoam, and the results can be compared with the DEM simulations in figure 8. The
results are shown for different Shields numbers (figures 8a–c), different particle to fluid
density ratios (figures 8d–f ), different interparticle friction coefficients (figures 8g–i) and
for different restitution coefficients (figures 8j–l).

Overall, the results are improved quantitatively compared with the initial model.
Focusing on figures 8(a–c) (variation of Shields number), the shape of the volume fraction
profiles is reproduced nicely, in particular the formation of the ‘shoulder’ at volume
fraction around φ ∼ 0.3. The velocity profiles are well predicted by the continuum model
for all Shields numbers. In particular, the depth of the flowing layer is captured perfectly.
This is remarkable as the depth at which the flow stops is a response of the stress and
energy balance between both phases and not computed with a bottom boundary condition.
The plateau of velocity observed previously in the dilute regime (figure 3) is no longer
present thanks to the saltation model. The shapes of the predicted velocity profiles are
in agreement with DEM ones in the dilute regime. For the low Shields number case
θ = 0.2, both the volume fraction and velocity profiles are not well predicted. That case is
at the transition with ordinary bedload, usually modelled using statistical approaches. The
height of the transport layer is of the same order as the particle diameter, which makes a
continuum description questionable and could explain the discrepancies of the continuum
model in the low-Shields-number case. As a consequence of the well-predicted volume
fraction and velocity profiles, the transport profiles are very well reproduced (see inset of
figure 8b). The thickness of the transport layer and its increase with the Shields number
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Figure 8. Comparison between DEM (symbols) and two-phase flow results with corrected model (solid
lines) for: (a–c) varying Shields numbers, simulation Ids 1–5; (d–f ) varying particle to fluid density ratios
r, simulation Ids 1 and 6–8; (g–i) varying interparticle friction coefficients μp, simulation Ids 1 and 9–12; and
( j–l) varying restitution coefficients e, simulation Ids 1 and 15–17. (a,d,g,j) Volume fraction profiles; (b,e,h,k)
dimensionless particle velocity and transport (inset) profiles; and (c, f,i,l) dimensionless granular temperature.

are particularly well predicted. The proposed continuum model also improves the predicted
granular temperature (figure 8c) compared with the initial model (figure 3c). To be more
quantitative, figure 9(a) shows the predicted transport error between the two-phase model
(initial model shown by empty symbols, proposed model shown by solid symbols) and the
DEM simulations, defined as e = |Qtwo-fluid

s − QDEM
s |/QDEM

s , with Qs = ∫z φv
p
x dz. Except

for the case θ = 0.2, the error is largely reduced with the proposed two-phase model,
below 15 %, while it was more than 50 % with the initial model. For θ = 0.2, the lower
error with the initial model is not relevant as this is due to compensating errors, and the
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Figure 9. (a) Error between solid transport rate in the discrete simulations and predicted by the initial model
(empty circles) and by the corrected model (solid squares) for varying Shields numbers (simulation Ids 1–5).
(b) Comparison of the fluid velocity profiles between DEM (symbols) and two-phase flow results with corrected
model (solid lines) for varying Shields numbers (simulation Ids 1–5).

proposed model is qualitatively better (compare figures 3 and 8). Concerning the fluid
velocity profiles (figure 9b), the two-phase model predictions are almost perfect. This is
not surprising as the fluid model is exactly the same in both models.

The two-fluid model predictions for varying density ratios (figures 8d–f ) are also in
very good agreement with the DEM results. In particular, the increase of dimensionless
transport for decreasing density ratio (inset of figure 8e) is captured by the two-fluid model.
In the saltation regime (z/d ∼ 15), the slight dependence of the particle velocity with the
density ratio is also reproduced by the two-fluid model. This is surprising, as the saltation
model of Jenkins et al. (2010) used in the two-fluid model accounts for a dependency on the
density ratio that was not observed in the DEM simulation (see discussions of § 3.4). This
indicates that this dependency does not have much effect in the explored range of density
ratio and could explain why it was not observed in the DEM simulations (figure 6).

The DEM results for varying interparticle friction coefficients (symbols of figure 8g–i),
indicate that the behaviour of the granular flow depends highly on the interparticle friction
μp when it is small, but not when it is large. The simulations at μp = 0.8 and 1.5 are
not shown because they are completely superimposed with the case μp = 0.6. This is in
line with the conclusions of § 3.3, where the radial distribution function g0 and rate of
granular temperature dissipation were observed to be independent of μp when it is higher
than 0.4–0.6. The two-fluid model reproduces correctly the dynamics of the granular
flow for frictional particles, even though the particle velocity and transport are slightly
underestimated for small interparticle friction coefficient μp � 0.2 (orange and green
curves of figure 8h). For frictionless particles (blue symbols and blue line), the two-fluid
model is quantitative in the dilute part but not in the dense part. In this case, the region
where the elastic stresses dominate is large, leading to a large granular flow depth. The
Coulomb-type model used for elastic stresses is certainly too simple to represent the
complexity of the flow for frictionless particles. However, for frictional particles, this
region is reduced drastically and the Coulomb model leads to very acceptable results.
Using a more elaborate model, especially able to represent the quasi-static granular flow
(Bouzid et al. 2013; Kamrin & Henann 2014; Zhang et al. 2022), would certainly make
it possible to model the granular flow of frictionless spheres and to improve the results at
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low interparticle friction. As natural particles are always frictional, the Coulomb model is
acceptable for the targeted configurations, and this is left for future work.

The results of the DEM and of the two-fluid model do not show any dependency on
the restitution coefficient (figures 8j–l). This is surprising, as the restitution coefficient is
one of the main parameters of the KT responsible for the granular energy dissipation. This
seems to indicate that for the range of parameters investigated herein, interparticle friction
controls the dissipation of energy. This is discussed in more detail in the next section.

Finally, simulations in which the particle diameter were varied have been performed. As
absolutely no effects were noticed in dimensionless form, these simulations are not shown.
This is not surprising, as all the closures introduced in the two-phase flow model scale with
the particle diameter. This should no longer be true if turbulence particle interactions are
considered.

4. Discussions

The proposed model has been shown to reproduce very accurately the DEM results. The
improvements provided by the corrections to account for interparticle friction and saltation
can be analysed in order to interpret the physics of the granular flow in bedload transport.

4.1. Interparticle friction controls the rate of energy dissipation
Interparticle friction has been shown to play an important role in the granular flow
behaviour. It modifies the radial distribution function and increases the granular
temperature dissipation at contact. In our DEM simulations with frictional particles
μp = 0.4, almost no influence of the restitution coefficient is observed (figures 8g,h).
The volume fraction and velocity profiles are completely superimposed whatever the
value of e, ranging from e = 0.3 to e = 0.9. The granular temperature is slightly higher
for a higher restitution coefficient, but no important trend is observed, while one could
expect a large difference between the cases e = 0.3 and e = 0.9. It indicates that the
dissipation of granular temperature is governed by interparticle friction rather than
inelasticity of collisions. Figure 10 shows the dimensionless rate of dissipation of frictional
particles, μp = 0.4, for restitution coefficients ranging from e = 0.3 to e = 0.9. The rate
of dissipation is slightly lower for e = 0.9, but is the same for the other simulations
with smaller restitution coefficients e � 0.7. On the contrary, a stronger influence on the
interparticle friction coefficient was observed both on the rate of dissipation (figure 5)
and on the macroscopic dynamics of the granular flow (figures 8g–i). This indicates that
in bedload transport of inertial particles and for the range of parameters investigated,
interparticle friction plays a more important role than inelasticity in the energy dissipation
at contact of frictional particles.

The two-fluid model reproduces correctly this property, as shown in figure 10, where
the solid line represents the predicted rate of granular temperature dissipation at contact.
For e � 0.7, the two-fluid model does not predict any influence of the restitution
coefficient on the energy dissipation at contact. Indeed, the dissipation Γ , predicted
by the KT, is proportional to 1 − e2 and therefore highly dependent on the restitution
coefficient when it is large (e > 0.7). When applying the correction proposed by Jenkins
& Zhang (2002), which consists of a reduction of the restitution coefficient to account
for friction (eeff = e − f (μ) < 0.7), the dissipation law is made less dependent on e.
The KT model is therefore applied in a range of parameters that barely depends on
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Figure 10. Dimensionless rate of dissipation of granular temperature at contact for different restitution
coefficients computed in the DEM simulations (simulation Ids 1 and 15–17) and predicted by the modified
KT to account for interparticle friction (μp = 0.4).

the restitution coefficient. As a consequence, the two-fluid model does not show much
dependence of the macroscopic behaviour on the restitution coefficient (figures 8j–l).

4.2. Macroscopic behaviour of frictional particles independent of particle microscopic
properties

When considering natural materials, particles are expected to be frictional, with μp �
0.4, and inelastic with e < 0.9. In this range of parameters, the rate of dissipation
of granular temperature does not depend on e or on μp (see figures 10 and 5).
Additionally, it was shown that interparticle friction modifies the radial distribution
function g0. A strong influence was noticed compared with frictionless particles, but the
effect saturates rapidly when the value of μp increases above μp � 0.4 (see figure 4).
This means that for frictional-inelastic particles, almost no influence of the restitution
coefficient and interparticle friction is expected on the macroscopic behaviour of the
granular flow. This is particularly interesting as natural materials are frictional and
non-spherical, and estimating their restitution coefficient and interparticle friction can
be an extremely difficult task. The proposed two-fluid model is able to reproduce this
property, and this strongly supports using it to predict bedload transport in more realistic
configurations.

The fact that the macroscopic behaviour becomes independent of the interparticle
friction coefficient when it is high enough can be interpreted from micromechanical
perspectives. When considering frictionless particles, a two-particle contact is necessarily
a sliding contact. Interparticle friction introduces the possibility of rotating contact.
Several studies have shown that the percentage of sliding contacts decreases very
rapidly with increasing interparticle friction coefficient (e.g. Thornton 2000; Yang,
Yang & Wang 2012), associated with a saturation of dissipated energy. According to
Thornton (2000), this indicates that interparticle ‘friction acts, primarily, as a kinematic
constraint. Enhanced friction at the contacts increases the stability of the system’.
Our observations are in agreement with the Thornton (2000) analysis, performed
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Figure 11. Plots of (a) μ(I) and (b) φ(I) computed in the DEM (symbols) and compared with: the rheological
law proposed by Maurin et al. (2016) ((1.1) and (1.2)) for bedload transport (dot-dashed lines); two-phase flow
simulation with the initial model before any correction (configuration 1, dashed lines); and two-phase flow
simulations with the corrected model for different Shields numbers (simulation Ids 1 and 3–5, solid lines).

with dense shear deformation DEM simulations, and therefore extends to the bedload
configuration.

In the present simulations, any impact of lubrication forces on collisions between
particles has been neglected. The experiments of Gondret, Lance & Petit (2002) and
Yang & Hunt (2006) showed that for particles immersed in a viscous fluid, the restitution
coefficient of the collisions reduces for slower impact velocity. In other words, lubrication
forces make particles even more inelastic and bring the system into a regime where it
depends even less on the restitution coefficient. Therefore, when considering more realistic
configurations of collisional bedload transport, neglecting the impact of lubrication forces
is certainly a reasonable assumption.

4.3. Granular flow rheology
Kinetic theory is often criticized for its inability to predict dense granular flows. Our
simulations, however, show very good results even in the dense regime. The results can
be interpreted in the framework of the granular flow rheology. Figure 11 shows the μ

versus I and φ versus I relations for different Shields numbers, where it is recalled that
μ = τ p/pp is the effective friction coefficient – or normal to shear stress ratio – and
I = dγ̇ /

√
Pp/ρp is the inertial number. The DEM data do not show any dependency with

the Shields number. The μ(I) rheology for bedload transport ((1.1) and (1.2)) derived by
Maurin et al. (2016) (dash-dotted line) is retrieved in the dense part of the granular flow,
0.3 < φ < 0.6, corresponding to 10−2 < I < 2. The departure between the data points
and the μ(I) rheology for small I (resp. large I) is characteristic of the quasi-static regime
(resp. the dilute regime) that cannot be captured by a local rheology such as μ(I)/φ(I)
rheology. The same observations can be made on the scaling law between the volume
fraction and the inertial number (figure 11b), with departure from the φ(I) law at low and
large values of I.

Both of these scaling laws can also be computed in the two-fluid simulations, in which
the effective friction coefficient is computed with the total stresses, i.e. the sum of the
elastic and kinetic-collisional contributions. They are plotted in coloured solid lines in
figure 11. Surprisingly, the μ(I)/φ(I) rheology is retrieved in the dense part of the
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granular flow. The elastic stresses make the effective friction coefficient asymptotically
join the static friction coefficient μs in the limit of vanishing inertial number. At large
inertial number, the two-fluid model overestimates the effective friction coefficient, but as
in the DEM, a deviation to the μ(I) rheology (dash-dotted line) is observed with a similar
trend. The φ(I) law is also very well reproduced in the entire range of inertial number. The
rheology obtained with the initial model for θ = 0.6, before application of the corrections
proposed in § 3, is plotted in the dashed line and highlights the role of these corrections
in the rheological behaviour of the granular flow. The dashed line shows two branches,
characteristic of a hysteresis behaviour, as suggested by Forterre & Pouliquen (2008).

In the dense regime, corresponding to the lower branch, the model shows the same
trend as in the DEM data but underestimates the stress ratio. This is because interparticle
friction was not taken into account in the first model, and the rate of dissipation
was underestimated. The corrections to account for interparticle friction, including
modification of g0 and of the restitution coefficient in the dissipation law, make the
granular flow less inertial, improving the results quantitatively. In the literature, the recent
attempts to model dense granular flows with the KT have used the extended KT, consisting
in the introduction of a correlation length in the dissipation term Γ . Our results suggest
that the reproduction of the dense granular flow regime over an erodible bed is dominated
by the competition between elastic-frictional and kinetic-collisional stresses rather than the
development of velocity correlation at high volume fraction (Jenkins 2006, 2007; Berzi &
Jenkins 2011; Berzi et al. 2020). In the present model, this is the hybridization of the KT
with a frictional model that makes it possible to recover the correct behaviour in the dense
regime.

In the dilute regime, corresponding to the higher branch, the behaviour predicted by the
initial model is completely different from the DEM simulations for both scaling laws, with
a turning point of the curves leading to a hysteresis effect. The proposed model, which
accounts for saltation in the dilute regime, removes this hysteresis and shows behaviour
similar to that in the DEM, in particular the local minimum of effective friction for I
between 2 and 8. This shows clearly that the departure from the μ(I) rheology, observed
both in the DEM and in the two-fluid model, is a signature of saltation. The saltation model
(3.5) proposed by Jenkins et al. (2010) predicts, after rewriting, a μ to I relationship as

μsalt = ρp3/2√φT
c0dK

I. (4.1)

The departure from the μ(I) rheology therefore corresponds to the transition from the
kinetic-collisional regime to the saltation regime. The inertial number at which this
transition occurs results from a competition between the different physical mechanisms
controlling the granular flow in the dilute regime, and should depend on the characteristics
of the flow, in particular on the ratio

√
φT/K. This regime transition is also observed in the

φ to I relation. Except for the case θ = 0.4, the two-fluid model reproduces quantitatively
the volume fraction in the dilute regime. The data seem to indicate that this transition
always occurs for a volume fraction approximately φ ∼ 0.25. A better understanding of
saltation in bedload transport and its modelling would be useful to better describe this
regime transition.

Among the different parameters explored in the present work, only μp was observed
to affect the rheology of the granular flow. The μ to I and φ to I relations are shown for
different interparticle friction coefficients in figure 12. The φ to I relation is not much
affected by the value of μp; however, in the dense part of the flow (I < 2 ∼ 3), the value
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Figure 12. Plots of (a) μ(I) and (b) φ(I) computed in the DEM (symbols) and compared with two-phase flow
simulations with the corrected model for different interparticle friction coefficient (simulation Ids 1 and 9–12,
solid lines).

of the stress ratio μ is lower for lower values of interparticle friction coefficient. This is not
surprising as the frictional μ(I) rheology depends on the static friction coefficient μs (see
(1.1)), which itself depends on the interparticle friction coefficient μp (see Appendix B).
On the contrary, for I > 2 ∼ 3, only slight dependencies on μp are observed, except for
the frictionless spheres. Again, this is not surprising as this corresponds to the saltation
regime, which is not expected to be affected by interparticle friction (4.1). For the whole
range of inertial number I, no more effect on the rheology is observed for μp > 0.4.

The two-fluid model represents qualitatively this dependency on the interparticle
friction coefficient, but it overestimates the stress ratio for the low values of μp. This
explains the discrepancies observed in figure 8(h) when comparing the velocity profiles
predicted by the two-fluid model with the DEM results. For higher values of the
interparticle friction coefficient, the agreement is excellent for a large range of inertial
number.

4.4. Evaluation with the experimental dataset of Ni & Capart (2018)
In order to further assess the proposed two-phase flow model, it is now compared
with the experimental dataset of Ni & Capart (2018). The authors performed turbulent
open-channel flow experiments with mobile bed particles, using a sloping channel of
length L = 1.3 m and width B = 120 mm. Particles are PMMA spheres of diameter
d = 7 mm and density ρp = 1190 kg m−3 immersed in a fluid (para-cymene) of density
ρ f = 855 kg m−3 and viscosity ν f = 1.15 × 10−6 m2 s−1. Particles have restitution
coefficient e = 0.93, dynamic friction coefficient μp = 0.55, and static friction coefficient
μs = 0.34. With respect to the discussion of § 4.2, the system dynamics should not be
sensitive to these microscopic particle parameters. Using an index-matching technique,
the authors were able to measure the fluid velocity, particle volume fraction and particle
streamwise velocity profiles.

The dataset is composed of eight experiments with varying fluid flow rate and channel
slope. The authors measured non-negligible convective accelerations that they attributed
to the flow non-uniformity. The equivalent one-dimensional flows are simulated with the
two-phase flow model. The same sediment mass is introduced in the model as well as
the same fluid free surface position. The channel slope S0 is modelled as a pressure
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gradient in the streamwise direction such that ∂pi/∂x = ρigS0, with i = f , p, depending
on the phase considered. The convective acceleration profiles measured experimentally
are depth-averaged and accounted for as source terms in the fluid phase. This methodology
ensures that at steady state, the stresses of the mixture (fluid and particle) in the simulations
are consistent with those measured in the experiments.

Because of the weak fluid submergence in the Ni & Capart (2018) experiments, the
mixing length given in (2.8a,b) that was used in the analysis above is not adapted for
this configuration. Indeed, for low submergence, turbulence originates from fluid–particle
interactions, and larger-scale turbulence, associated with the flow depth, is not able
to develop. Therefore, the mixing length proposed by Berzi & Fraccarollo (2015) is
adopted hereafter: lm = 3d(φmax − φ)3. It scales with the particle diameter and the volume
fraction, consistent with fluid–particle turbulence. In their experiments, Ni & Capart
(2018) observed lm = 0.2d as a minimal value for the mixing length. The following form
of mixing length is therefore adopted:

lm = max
[
3d (φmax − φ)3 , 0.2d

]
. (4.2)

This form of mixing length has already been used in Zhang et al. (2022) to reproduce
sediment transport simulations with the lattice Boltzman method coupled with DEM.

Contrary to the DEM simulations presented in § 3.1, the particles experience
interactions with the fluid turbulence. In turbulence-averaged models, this can be
accounted for with the introduction of a drift velocity ud in the drag force, and (2.9)
becomes (Chauchat 2018)

nfD = φ(1 − φ)K(u f − up + ud). (4.3)

The drift velocity represents the fluid velocity fluctuations ‘seen by the particles’, and
it corresponds physically to a dispersion effect on the particle phase induced by the
turbulent velocity fluctuations. Consistently with the Rouse (1937) approximation, it is
usually modelled using a gradient diffusion model as

ud = νt

Sc

∇φ

φ
, (4.4)

where Sc = 1/3 is the Schmidt number. The modification of the mixing length and the
addition of the drift velocity are the only modifications made to the two-phase flow model.

Figure 13 compares the two-phase flow simulations with the experimental
measurements for Shields number ranging from 0.2 to 0.4. The Shields number is
computed in the experiments as θ = ρg(hf − hb)S0/[(ρp − ρ f )gd], where hf is the free
surface position, and hb is the bed position corresponding to 99 % of the solid transport
rate. Overall, the two-phase flow simulations are in qualitative agreement with the
laboratory experiments. The increase of both the particle and fluid velocities, as well
as the flowing depth, with the Shields number is captured correctly. In particular, the
particle velocity profiles (figure 13b) are in excellent agreement for the whole range of
depth. The fluid velocity profiles are correct for intermediate to large volume fraction,
z/d � 4, but a slight departure is observed above this level. This is because the volume
fraction in this region is not well predicted by the model, which affects the fluid velocity
through the volume fraction dependency in the mixing length. The model is indeed
less accurate at predicting the volume fraction profiles (figure 13a). The particles were
observed to be more deposited in the simulations. The granular temperature (figure 13d)
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Figure 13. Evaluation of the two-phase model with the Ni & Capart (2018) turbulent bedload transport
experiments at four Shields numbers: (a) volume fraction, (b) dimensionless particle velocity, (c) dimensionless
fluid velocity, and (d) dimensionless granular temperature.

is also underpredicted. This may explain the differences in the volume fraction profiles: if
particles have less fluctuating kinetic energy, then they are more deposited. In comparison
with the DEM simulations, the dimensionless granular temperature is substantially higher
in the experiments than in the discrete simulations. This seems to indicate that there
exist transfers of fluctuating energy between the fluid and the particle phases. This is not
accounted for in the present model. It may play a important role in the particle dynamics,
and it could be responsible for some of the model discrepancies.

The present evaluation of the model with the Ni & Capart (2018) dataset therefore
validates the model when turbulence is negligible and does not affect the particles much,
which is the purpose of this work. To be able to reproduce more realistic configurations,
it will be necessary to investigate further the transfers of fluctuating energy between the
fluid and particle phases. The present model represents a very good basis to incorporate
these physical processes, but it is beyond the scope of the present contribution.

To evaluate the improvements achieved in this work, figure 14 compares, for the
experimental configuration θ = 0.39, the initial model (dashed line) with the proposed
model (solid line). The improvements on the granular velocity are obvious. The flow depth,
the velocity magnitude and the behaviour in the dilute region are largely improved by the
proposed model. Because the proposed model accounts for the energy dissipation due
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Figure 14. Comparison of the initial (dashed line) and proposed (solid line) models with the experimental case
θ = 0.39 (symbols): (a) volume fraction, (b) dimensionless particle velocity, and (c) dimensionless granular
temperature.

to interparticle friction, the granular temperature is lower in the proposed model, which
makes the bed more compacted.

5. Conclusions

In this paper, the modelling of bedload transport in the collisional regime has been studied.
In order to focus on the sediment phase modelling, simple fluid–particle interactions have
been considered without turbulent–particle interactions. The sediment phase is modelled
with a frictional–collisional approach (Johnson & Jackson 1987). Comparisons with
coupled fluid–DEM simulations have highlighted that the classical kinetic theory (KT)
model of Garzó & Dufty (1999) is not able to reproduce correctly the behaviour of the
granular flow. It is shown that interparticle friction strongly influences the dynamics of the
flow, increasing dissipation and modifying the radial distribution function g0. In the dilute
regime, at the top of the sediment bed, the saltation regime could not be predicted by the
Garzó & Dufty (1999) model.

Based on these observations, modifications to the classical Garzó & Dufty (1999) model
have been proposed: (i) the theoretical saltation model of Jenkins et al. (2010) has been
used; and (ii) the impact of the interparticle friction on the dissipation of energy at
contact has been accounted for following the theoretical development of Jenkins & Zhang
(2002), consisting in reducing the restitution coefficient. The proposed model, based
essentially on theoretical developments, has shown remarkable capabilities at reproducing
the DEM simulations for a large variation of Shields number, particle to fluid density ratio,
interparticle friction coefficient, restitution coefficient and particle diameter.

The results allowed us to demonstrate the primary role played by interparticle friction in
the dissipation of granular energy. Additionally, it was shown that for frictional-inelastic
particles (μp > 0.4 and e � 0.7) corresponding to most natural materials, the macroscopic
behaviour of the granular flow is independent on the microscopic properties of the
particles, i.e. interparticle friction and restitution coefficient. The proposed two-fluid
model is able to reproduce this property, giving it strong credit for further applications
to sediment transport involving natural particles.

This work has also shown that in the bedload configuration, the frictional–collisional
approach is consistent with the μ(I) rheology and represents a first success to reproduce
the dense granular flow rheology with the KT in granular flow on an erodible bed. The
approach presented in this paper could be adapted easily to other granular configurations,
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in particular to any granular flows over an erodible bed, and should also be able to
reproduce the rheological properties of the flow.

Finally, the proposed two-fluid model has been compared with experiments (Ni &
Capart 2018). The improvements achieved by the proposed model are remarkable. It
therefore represents a strong basis to further study turbulence–particle interactions and
their modelling in more complex configurations, such as real turbulent sediment transport
with coherent structures or in the presence of hydraulic structures such as scour around
pipelines or bridge piers.
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Appendix A. Definition of ensemble- and Favre-averaged operators

The mass and momentum equations are obtained through a double averaging procedure.
First, an ensemble averaging allows one to obtain hydrodynamics quantities and continuum
fields for the particle phase. A second Favre averaging provides turbulence filtered
quantities.

A.1. Ensemble average
The averaging procedure proposed by Jackson (1997, 2000) is adopted. It is based on
a weighting function, representing the volume in which the averaging is performed.
Considering the symmetry of the problem, a cuboid weighting function H with the same
length and width as the three-dimensional domain is applied. In the vertical direction, in
order to capture the strong gradient of the mean flow, the vertical thickness of the box is
taken as dz = d/30. The solid volume fraction is computed as

φ(z) =
∑

p

∫
Vp

H(|z − z′|) dV, (A1)

where Vp represents the volume of particle p. The fluid volume fraction is ε = 1 − φ. The
average over the solid phase of any scalar quantity γ is computed as

〈γ 〉p(z) = 1
φ(z)

∑
p

∫
Vp

γ (z′)H(|z − z′|) dV, (A2)
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Figure 15. Static friction coefficient as a function of interparticle friction.

and the average over the fluid phase of any scalar quantity γ is computed as

〈γ 〉 f (z) = 1
ε(z)

∫
Vf

γ (z′)H(|z − z′|) dV, (A3)

where Vf is the volume occupied by the fluid phase.

A.2. Favre average
To average over turbulence, a Favre-averaging procedure is adopted. It involves an
averaging over realizations defined as

γ̃ = 1
N

lim
N→∞

N∑
k=1

γk, (A4)

where γk is a given realization k of a quantity γ , and N is the total number of realizations.
The Favre average is then defined as a concentration-weighted average, and is therefore
different depending on the phase considered. For a quantity γ , the Favre averages over the
fluid and solid phases are defined, respectively, as

γ̄ f =
˜(1 − φ)γ

1 − φ̃
, (A5)

γ̄ p = φ̃γ

φ̃
. (A6)

Appendix B. Static friction coefficient

The static friction coefficient, corresponding to the threshold below which no motion is
possible a priori, is estimated from numerical DEM data of the literature (Oger et al. 1998;
Thornton 2000; Suiker & Fleck 2004; Maeda, Hirabayashi & Ohmura 2006; Kruyt &
Rothenburg 2006; Peña et al. 2008; Antony & Kruyt 2009; Yang et al. 2012) first collected
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Figure 16. Variation of f (μp) as a function of μp.

and discussed in Dai, Yang & Zhou (2016). This dataset, shown in figure 15, was obtained
by micromechanical analyses of DEM simulations and is used here to estimate the static
friction coefficient as a function of the interparticle friction coefficient. A good estimation
can be obtained with the following fit of the data, plotted as a dashed black line in figure 15:

μs = μs0 + μs1 tanh
(

μp

μs2

)
, (B1)

with μs0 = 0.146, μs1 = 0.228 and μs2 = 0.232. For μp = 0.4, this yields a static friction
coefficient μs = 0.36, very close to the value computed by Maurin et al. (2016) (μs =
0.35) with DEM simulations of bedload transport with μp = 0.4.

Appendix C. Effective restitution coefficient expressions derived by Jenkins & Zhang
(2002)

Based on asymptotical development at small interparticle friction, Jenkins & Zhang (2002)
introduced an effective restitution coefficient in the rate of dissipation that accounts for the
transfer of translational to rotational fluctuating kinetic energy and to the additional rate
of dissipation due to interparticle friction. The obtained effective restitution coefficient is

eeff = e − f (μp) = e − 1
2

(
a1 − a2

b1

b2

)
, (C1)

with

a1 = μp

μ0

[
πμ0

(
1 − 2

π
arctan(μ0)

)
+ 2μ2

0

1 + μ2
0

(1 − 2μp/μ0)

]
, (C2)

a2 = 5
2

μp

μ0

[
π

2
μ0

(
1 − 2

π
arctan(μ0)

)
+ μ2

0 − μ4
0

(1 + μ2
0)

2

]
, (C3)

b1 =
(

μp

μ0

)2 μ2
0

1 + μ2
0
, (C4)
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b2 = 1
2

μp

μ0

[
π

2
μ0

(
1 − 2

π
arctan(μ0)

)
+ μ2

0

1 + μ2
0

]
, (C5)

μ0 = 7
2

μp 1 + e
1 + et

, (C6)

where et is the tangential restitution coefficient, set to zero in the present simulations.

Appendix D. Computation of the granular temperature dissipation by the drag force

The aim of this appendix is to compute the phase-averaged dissipation of granular
temperature by the drag force. In the Jint expression (2.30), replacing fDi by the drag force
expression (2.9) and the drag coefficient CD by (2.11a,b), the phase-averaged dissipation
or granular temperature by the drag force is computed as

Jint = n
〈
fDiv

p′
i

〉p
= 3

4
φρ f (1 − φ)−ζ

d

〈
CD ‖u f − vp‖ (u f

i − v
p
i )v

p′
i

〉p
= 3

4
φρ f (1 − φ)−ζ

d

[
C∞

D

〈
‖u f − vp‖ (u f

i − v
p
i )v

p′
i

〉p
+ 24.4ν f

d

〈
(u f

i − v
p
i )v

p′
i

〉p]
.

(D1)

The fluid and particle velocities can be decomposed into an averaged component and a
fluctuating component. In the present configuration, the averaged velocities are non-zero
only in the streamwise direction. In addition, as the models used in this paper do not
consider any fluid velocity fluctuations, they are considered to be zero. The fluid and
particles velocities can therefore be expressed as

u f =
(〈

u f
x
〉 f

, 0, 0
)

, (D2)

vp =
(〈

v
p
x
〉p + vp′

x , vp′
y , vp′

z

)
. (D3)

Let us consider the second term in the brackets of (D1). Replacing for the decomposition
of velocities (D2) and (D3), it can be expressed as

(u f
i − v

p
i )v

p′
i =

(〈
u f

x
〉 f − 〈vp

x
〉p)

vp′
x − v

p′
i v

p′
i , (D4)

and applying the Favre average over the solid phase, the first term vanishes and the second
is three times the granular temperature:〈

(u f
i − v

p
i )v

p′
i

〉p
= −3T. (D5)

Let us consider now the first term in the brackets of (D1). The norm of the relative
velocity can be expressed as

‖u f − vp‖ =
∥∥∥∥〈u f

〉 f − 〈vp
〉p∥∥∥∥
√√√√√√1 − 2

v
p′
x〈

u f
x
〉 f − 〈vp

x
〉p + v

p′
i v

p′
i(〈

u f
x
〉 f − 〈vp

x
〉p)2 , (D6)
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Figure 17. Streamwise fluctuating kinetic energy as a function of the granular temperature computed in the
DEM simulations for different Shields numbers (simulations 1–5). Dashed line is 2T .

and performing a Taylor expansion at first order in fluctuating velocity, it becomes

‖u f − vp‖ =
∥∥∥∥〈u f

〉 f − 〈vp
〉p∥∥∥∥
⎛⎝1 − v

p′
x〈

u f
x
〉 f − 〈vp

x
〉p
⎞⎠+ o(vp′2). (D7)

Multiplying by (D4) yields

‖u f − vp‖(u f
i − v

p
i )v

p′
i =

∥∥∥∥〈u f
〉 f − 〈vp

〉p∥∥∥∥
×
⎡⎣(〈u f

x
〉 f − 〈vp

x
〉p)

vp′
x − vp′

x vp′
x − v

p′
i v

p′
i + v

p′
i v

p′
i v

p′
x〈

u f
x
〉 f − 〈vp

x
〉p
⎤⎦+ o(vp′3). (D8)

The last term is a third-order term and can therefore be neglected. Applying the Favre
average over the solid phase, the first term in the brackets vanishes, and we have〈

‖u f − vp‖ (u f
i − v

p
i )v

p′
i

〉p
=
∥∥∥∥〈u f

〉 f − 〈vp
〉p∥∥∥∥ (−〈vp′

x v
p′
x
〉p − 3T

)
. (D9)

Replacing (D5) and (D9) in the drag term (D1), it is expressed as

Jint = 3
4

φρ f(1 − φ)−ζ

d

∥∥∥〈u f
〉p − 〈vp

〉p∥∥∥[−C∞
D
〈
v

p′
x v

p′
x
〉p − C∞

D 3T − 24.4ν f

d
∥∥〈u f

〉p − 〈vp
〉p∥∥ 3T

]

= 3
4

φρ f (1 − φ)−ζ

d

∥∥∥〈u f
〉p − 〈vp

〉p∥∥∥CD

(
−C∞

D
CD

〈
v

p′
x v

p′
x
〉p − 3T

)
, (D10)

where CD is the drag coefficient computed with phase-averaged velocities.
In the bedload configuration, velocity fluctuations are not isotropic, and as shown

in figure 17, the streamwise fluctuating energy can be estimated as approximately

964 A27-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

33
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.335


R. Chassagne, C. Bonamy and J. Chauchat〈
v

p′
x v

p′
x
〉p ∼ 2T . Finally, the drag interaction term becomes

Jint = −φ(1 − φ)K
(

3 + 2
C∞

D
CD

)
T. (D11)

The drag coefficient K is expressed using the Favre-averaged velocities, and the term
2(C∞

D /CD) represents a correction to account for the quadratic nature of the drag force.
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