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Gravity-driven size segregation is important in mountain streams where a wide range of
grain sizes are transported as bedload. More particularly, vertical size segregation is a
multi-scale process that originates in interactions at the scale of particles with important
morphological consequences for the river bed. To address this issue, a volume-averaged
multi-phase flow model for immersed bi-disperse granular flows was developed based
on an interparticle segregation force (Guillard et al., J. Fluid Mech., vol. 807, 2016,
R1) and a granular Stokesian drag force (Tripathi & Khakhar, J. Fluid Mech., vol. 717,
2013, pp. 643–669). An advection–diffusion model was derived from this model yielding
parametrisations for the advection and diffusion coefficients based on the interparticle
interactions. This approach makes it possible to bridge the gap between grain-scale
physics and continuum modelling. Both models were successfully tested against existing
discrete element model (DEM) simulations of size segregation in bedload transport
(Chassagne et al., J. Fluid Mech., vol. 895, 2020, A30). Through a detailed investigation
of the granular forces, it is demonstrated that the observed scaling of the advection and
diffusion coefficients with the inertial number can be explained by the granular drag force
dependency on the viscosity. The drag coefficient is shown to be linearly dependent on the
small particle concentration. A new scaling relationship for the segregation force including
the small particle concentration and the pressure is proposed. Lastly, adding a size-ratio
dependency in the segregation force fairly reproduces the DEM results for a large range of
small particle concentrations and size ratios.
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1. Introduction

Bedload transport, the coarser sediment load transported by the water flow in close
contact with the mobile river bed, is a major process that shapes the Earth’s surface
with consequences for public safety, water resources, territorial development and fluvial
ecology. In mountain streams with steep slopes, large quantities of a wide range of grain
sizes are transported, leading to grain size sorting, more generally named size segregation.
Size segregation remains a poorly understood phenomenon (Gray 2018) impairing our
ability to model the interplay between sediment transport rates and channel morphological
evolution such as armouring (Bathurst 2007), bedload sheets (Venditti et al. 2010; Bacchi
et al. 2014), patching (Nelson, Dietrich & Venditti 2010) or downstream fining (Paola
et al. 1992). The physics of granular media has been advocated to address segregation
at the granular scale and understand geomorphological evolution (Frey & Church 2009,
2011). Size segregation largely originates from local interparticle interactions but has
huge consequences for the particle size repartition both in the downward and streamwise
directions over a much larger scale, potentially affecting sediment mobility and the entire
channel geomorphological equilibrium (Gilbert & Murphy 1914; Ferguson et al. 2015;
Dudill, Frey & Church 2017; Dudill et al. 2018, 2020). While investigating segregation
at the granular scale (usually with discrete methods) is invaluable (Hill & Tan 2014;
Ferdowsi et al. 2017; Chassagne et al. 2020b), it is also necessary to consider continuum
modelling to improve our theoretical understanding and to provide predictions at larger
scales. The focus of this paper is therefore to bridge the gap between the granular-scale
processes and continuum modelling, by determining closures based on local granular
mechanisms.

This contribution focuses on vertical size segregation processes due to kinetic sieving
and associated squeeze expulsion (Savage & Lun 1988; Gray 2018). The moving particles
act as a random fluctuating sieve, in which small particles are more likely to percolate
under the action of gravity than larger particles. This downward movement is balanced
by an upward squeeze expulsion which equally applies on small and large particles,
resulting in a net downward motion of the small particles. The combination of both
processes is called gravity-driven segregation (Gray 2018) and is the dominant mechanism
in bedload transport. Beyond the few studies made on size segregation in bedload
transport (Hergault et al. 2010; Ferdowsi et al. 2017; Lafaye de Micheaux, Ducottet
& Frey 2018; Frey et al. 2020; Chassagne et al. 2020a,b), these processes have been
studied experimentally and numerically in many granular flows such as dry granular
avalanches (Savage & Lun 1988; Dolgunin & Ukolov 1995; Wiederseiner et al. 2011;
Jones et al. 2018; Thornton, Gray & Hogg 2006; Guillard, Forterre & Pouliquen 2016),
shear cells (Golick & Daniels 2009; van der Vaart et al. 2015) or annular rotating drums
(Thomas 2000).

While particularly complex segregation phenomena were observed (Thomas 2000), size
segregation has been found to be mainly related to the forcing, the size ratio and the fine
particle volume fraction. Savage & Lun (1988) predicted from dimensional analysis that
the shear rate γ̇ p should be the controlling parameter for size segregation. Indeed, when
a granular medium is sheared, a layer of particles moves relatively faster than the one
beneath, allowing particles to find gaps in which to fall by gravity. This theory agrees with
experimental bi-disperse flow down inclined planes (Savage & Lun 1988). In more recent
works, Golick & Daniels (2009) with shear cell experiments, and Fry et al. (2018) with
shear cell discrete element model (DEM) simulations, evidenced the effect of granular
pressure, observing less efficient segregation when increasing the pressure. Gray (2018)
suggested that size segregation depends on the inertial number, classically used to describe
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Multi-phase flow modelling of grain-size segregation

granular rheology (GDR MiDi 2004; da Cruz et al. 2005),

I = dlγ̇
p

√
pp/ρp , (1.1)

where dl is the large particle diameter, γ̇ p is the granular shear rate, pp is the granular
pressure and ρp is the particle density. DEM simulations of dry granular flows (Fry
et al. 2018) and turbulent bedload transport (Chassagne et al. 2020b) have shown that
the segregation velocity indeed scales with the inertial number to a power 0.845 ± 0.05
from quasi-static to dense granular flow regimes.

Not surprisingly, a number of studies have also found that the segregation depends on
the particle size ratio in the kinetic sieving regime. As kinetic sieving is related to the gaps
created by shearing, it appears logical that it should be related to the size ratio. However,
while Chassagne et al. (2020b) have found that segregation increases monotonically with
the size ratio in quasi-static regimes (I < 10−3–10−2) for size ratio up to 3, Golick &
Daniels (2009), Guillard et al. (2016) and Jing et al. (2020) found that it experiences a
maximum efficiency for a size ratio of two, r = 2, for more dynamic granular regimes
(10−3 < I < 1). Yet, there is still no satisfying theory that explains this difference.

Similarly to the hindrance function for the fluid drag force on a particle, size segregation
has also been observed to depend on the concentration of fine particles. Indeed, studies
indicate that the efficiency of the segregation process is linked to concentration in small
(or large) particles in the granular sample (Fan et al. 2014a; van der Vaart et al. 2015; Jones
et al. 2018).

Size segregation can be analysed from a particle-scale mechanistic point of view, or a
continuum one. On the one hand, considering a large particle in a bath of small particles,
size segregation can be seen as a force destabilising the large particle and leading to a
migration with respect to the small particles. A number of authors have adopted this
approach and have shown that a particle experiences different kind of forces linked to
size segregation (Ding, Gravish & Goldman 2011; Tripathi & Khakhar 2013; Guillard
et al. 2016; Staron 2018; van der Vaart et al. 2018). The forces can be decomposed into a
component that drives the segregation and a resulting resisting component linked to the
relative motion of the large particle with respect to the small. These two different forces
have been isolated by Guillard et al. (2016) and Tripathi & Khakhar (2013). To assess the
segregation forces due to the particle size differences, Guillard et al. (2016) performed
two-dimensional (2-D) DEM simulations of a large disk placed in a bed of small disks
in the simple shear flow configuration. Maintaining the large disk at a given position
with a virtual spring, they were able to assess the vertical segregation force applied by
the small particles to the large one, fseg, without generating a resisting force due to the
particle motion. Guillard et al. (2016) found that the vertical segregation force has two
contributions: one proportional to the pressure gradient ∂pp/∂z arising from the enduring
contact between particles; the other proportional to the granular shear stress gradient
∂|τ p|/∂z

fseg = Vl

(
F(μ, r)

∂pp

∂z
+ G(μ, r)

∂|τ p|
∂z

)
, (1.2)

where Vl = πd3
l /6 is the volume of the intruder and F and G are empirical functions

depending on the friction coefficient μ = |τ p|/pp and on the size ratio r = dl/ds between
the intruder and the surrounding small particles. Guillard et al. (2016) studied the
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dependency on both parameters but only provided a dependency with μ as

F(μ)=2.4 + 0.73 exp
(

−(μ − μc)

0.051

)
and G(μ) = −

(
2 + 5.5 exp

(
−(μ − μc)

0.076

))
,

(1.3a,b)
where μc is the critical friction coefficient defining the threshold of movement. It appears
that the segregation force proposed in (1.2) accounts for a granular buoyancy force that
counter-balances the weight of the particle and a granular lift force arising from multiple
inter-particle contact interactions with the intruder (Guillard, Forterre & Pouliquen 2014).
Hence the dependencies (1.3a,b) result from the measurements of both these forces.

Tripathi & Khakhar (2013) performed 3-D DEM simulations of a settling heavy sphere
in a bed of lighter spheres, during a steady dry granular flow on an inclined plan. This
density segregation set-up generates a relative motion between the heavy sphere and the
lighter ones, without generating segregation forces due to size ratio. By analogy with
classical hydrodynamics, light particles playing the role of an ambient fluid, the authors
showed that the interaction force could be modelled with a Stokesian form of a solid drag
force

f p
d = c(Φ)πηpdlv, (1.4)

where v is the settling velocity of the heavier particle, c(Φ) is a drag coefficient depending
on the local solid volume fraction Φ and ηp = |τ p|/|γ̇ p| is the viscosity of the granular
medium considered as a non-Newtonian fluid. Tripathi & Khakhar (2013) suggested that
c(Φ) depends on the local volume fraction Φ but still remains of the same order as the
value observed for a Stokes law in Newtonian fluids, i.e. c = 3. These two forces allow
one to understand particle migration locally, and to relate the segregation behaviour of
particles to the local characteristics of the granular flow.

By contrast, addressing the effect of size segregation processes at the large scale
requires a different approach that disregards the particles. Such an approach has been
extensively developed in the last few years focusing on a description of segregation as
an advection–diffusion model for the percolation of small particles (Dolgunin, Kudy &
Ukolov 1998; Gray & Chugunov 2006; Thornton et al. 2006; Hill & Tan 2014; van der
Vaart et al. 2015; Ferdowsi et al. 2017; Gray 2018; Cai et al. 2019; Fry et al. 2019;
Umbanhowar, Lueptow & Ottino 2019)

∂φs

∂t
− ∂

∂z

(
φsws

) = ∂

∂z

(
D

∂φs

∂z

)
, (1.5)

where t denotes for time, z the vertical axis, φs and φl are the small and large particle
concentrations and sum to unity (with φs + φl = 1), ws is the advection velocity of
segregation and D is the diffusion coefficient. This equation is characterised by the
segregation flux φsws, and the advective velocity ws, which encompass the physical
dependencies of the size segregation discussed previously. The advective velocity should
therefore have a dependence on the local concentration, which is classically taken as
proportional to the large particle concentration, ws = φlSr (Dolgunin & Ukolov 1995;
Gray & Thornton 2005). Here, Sr is the advection coefficient of small particles into large
particles. The latter has usually been taken as an empirical constant for a given application,
or determined from a semi-empirical analysis. Based on a dimensional analysis and DEM
simulations, Chassagne et al. (2020b) showed that it should depend on both the inertial
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Multi-phase flow modelling of grain-size segregation

number and the size ratio. The diffusion coefficient D models the diffusive remixing of
small particles into large particles. The diffusion coefficient has also received attention in
the literature (Bridgwater, Foo & Stephens 1985; Fan et al. 2015; Fry et al. 2019). It has
been suggested that it should depend on the volume fraction (Cai et al. 2019) and on the
inertial number (Chassagne et al. 2020b).

Developing a three-phase continuum mixture theory to model a bi-disperse combination
of large and small particles with an interstitial passive fluid, Thornton et al. (2006) and
Gray & Chugunov (2006) were able to analytically derive the advection–diffusion model
(1.5). This derivation represented an important step in the understanding of the physical
processes at work in size segregation since the advection and diffusion coefficients of the
advection–diffusion equation were linked to the particle-scale interactions. In particular,
the derivation is based on the assumption that the size segregation directly takes its
origin in the heterogeneous distribution of the granular pressure between small and large
particles. However, the form of the interaction forces between large and small particles
have been postulated without support from independent physical evidence.

This literature review evidences the absence of a direct link between the continuum
modelling of grain-size segregation and the local segregation forces experienced by a
grain. In this context, the aim of the present paper is to bridge the gap between the
granular-scale approach and the continuum modelling. Based on the particle-scale forces
proposed by Guillard et al. (2016) and Tripathi & Khakhar (2013), a volume-averaging
approach (Jackson 1997, 2000) is adopted here to derive a multi-phase continuum model
from granular-scale forces. In addition to the novelty of the developed approach, the
derivation proposed by Thornton et al. (2006) is used to express the advection–diffusion
equation from the new multi-phase flow model, providing improved formulations of the
advection and diffusion coefficients that contain the particle-scale granular dependencies.
In order to test the proposed models, the bi-disperse turbulent bedload transport
configurations investigated in Chassagne et al. (2020b) are used for comparison. The
DEM simulations performed by the authors give a good reference in which granular-scale
processes are explicitly resolved. In addition, it is then possible to focus on size segregation
by providing an input for the granular viscosity ηp = |τ p|/|γ̇ p| and the friction coefficient
μ = |τ p|/pp, avoiding the use of rheology laws. As the study of Chassagne et al. (2020b)
focused on the quasi-static part of the bed in turbulent bedload transport, the comparison
will be mainly performed in this regime. Since the fluid turbulence can be neglected in this
regime (Maurin, Chauchat & Frey 2016), it will not be taken into account in the derivation
of the equations.

The paper is organised as follows: first, the forces acting at the granular scale for
a single large intruder in an immersed sheared granular flow are discussed. Then, in
§ 3, the multi-phase flow model is derived by volume averaging and the associated
advection–diffusion equation is derived in § 4. Finally, both models are compared to the
DEM simulations (§ 5) and ways to improve the closures are discussed in § 6, including
the influence of the size ratio.

2. A large intruder in a bath of small particles

As a first step, the force balance applied on a single large grain in an immersed granular
medium made of smaller particles is presented. This Lagrangian equation of motion for
the large intruder is then made dimensionless using classical scalings for granular flows,
with the large particle diameter as the length scale. An order of magnitude analysis makes
it possible to determine the most important forces for bedload transport application.
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h

z

x

fl

fd f
fd p

Πp
Πf

P

0

θ

G

Figure 1. Vertical component of the forces acting on a large intruder; Π f (blue solid line) is the buoyancy due
to the fluid, Πp (——, black solid line) is the granular buoyancy and f l (——, red solid line) is the lift force
identified by Guillard et al. (2014, 2016). The particle is also submitted to the drag forces f p

d (——, light green
solid line) and f f

d (blue solid line), respectively due to the interaction with small particles (Tripathi & Khakhar
2013) and the fluid.

2.1. Force balance on the large intruder
The configuration is sketched in figure 1. The large particle is of diameter dl, volume Vl
and density ρp in a bed of height h made of small particles. Below this layer the grains
are in the quasi-static regime. Applying Newton’s second law, the vertical Lagrangian
equation of the intruder can be expressed as

ρpVl
dwl

dt
= P − Πf + f f

d + f p
d − Πp − fl. (2.1)

In (2.1), the large intruder is submitted to six forces (see figure 1): its weight P =
−ρpVlg cos θ , the fluid buoyancy force Πf = −ρ f Vlg cos θ , the granular buoyancy Πp due
to the reaction of the small particles, the drag force exerted by the fluid f f

d , the drag force
exerted by the small particles f p

d and the lift force fl responsible for the ascent of the large
intruder (Guillard et al. 2014, 2016). In the present configuration, the slope angle is low
(tan θ = 0.1) and the streamwise gravity component is negligible, making the contribution
of the shear stress gradient to the granular buoyancy and lift forces negligible (see (1.2)
from Guillard et al. 2016). Thus, the pressure gradient contribution of (1.2) is dominant
and the granular buoyancy force is defined as

Πp = Vl

Φmax

∂ps

∂z
, (2.2)

where ps is the overburden pressure of the surrounding small particles. The lift force is

fl = VlFl(μ)
∂ps

∂z
, (2.3)

where Fl(μ) = (1 − exp(−70(μ − μc))) will be called the empirical segregation function
and is proposed based on the empirical function F(μ) (see (1.3a,b)) in order to only
account for the lift force part of (1.2) (see Appendix A).

While segregating at a velocity wl, the large particle is submitted to a fluid drag force.
Because the particulate Reynolds number based on the vertical velocity Rep = dlρ

f wl/η f

is very small in the bed, fluid inertial effects are negligible at the particle length scale and
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the vertical fluid drag force f d
f may be approximated by the Stokes law (Stokes 1851)

f f
d = 3πη f dl(w f − wl), (2.4)

where η f is the fluid dynamic viscosity and w f is the vertical velocity of the fluid.
During its segregation motion, the intruder is also submitted to frictional forces from the

surrounding small particles. This results in a particle drag force f p
d modelled as proposed

by Tripathi & Khakhar (2013) (see (1.4)) as

f p
d = cπηpdl

(
ws − wl

)
, (2.5)

where ws is the vertical velocity of small particles and the drag coefficient c is first
approximated as a constant equal to 3 (Tripathi & Khakhar 2013).

2.2. Dimensionless equation for the large intruder
In order to identify the dominant terms in (2.1), it is made dimensionless using classical
scalings for granular flows

wk =
√

dlgw̃k, z = dlz̃, t =
√

dl/gt̃ and pk = ρpdlgp̃k, (2.6a–d)

where k = s, l or f respectively for the surrounding small particles, the large intruder
and the fluid. Introducing these variables and (2.3) in (2.1) and taking into account that
cos θ ∼ 1, the dimensionless form of the large intruder Lagrangian equation of motion
can be written as

dw̃l

dt̃
= w̃ f − w̃l

St f + w̃s − w̃l

Stp
− Fl(μ)

∂ p̃s

∂ z̃
. (2.7)

Equation (2.7) contains two dimensionless numbers. The first one is the fluid Stokes
number

St f = ρpdlW
6cη f , (2.8)

in which W = √
dlg is the characteristic velocity of the large particle. This Stokes number

compares the inertia of the large intruder with the viscous friction exerted by the fluid.
Similarly, the granular Stokes number

Stp = ρpdlW
6cηp , (2.9)

compares the inertia of the large intruder with the contact friction exerted by the small
particles in the vicinity of the intruder.

Assuming a classical bedload configuration, the fluid flows inside the porous matrix
of the granular bed. Only the first layer of particles at the top is in a dense flow regime.
Below this layer, μ < μc, meaning that the grains are in the quasi-static regime. Typical
values of the granular viscosity for dense granular flows are very high compared with the
water viscosity (typical ranges span from 103 Pa s at the bed surface to 106 Pa s at the bed
bottom). This results in a fluid Stokes number St f much larger than the granular Stokes
number Stp whatever the height into the bed. Therefore, the first term on the right-hand
side of (2.7), representing the fluid drag force, can be neglected. In addition, while the large
intruder is rising, it only modifies the small particle bed structure locally. Therefore, it is
assumed that the vertical velocity of the intruder does not disturb the vertical bulk velocity,
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implying that ws ∼ 0 (Tripathi & Khakhar (2011) showed that the bulk flow around the
intruder was disturbed until a distance of 1 diameter of the large intruder for higher shear
stress). Focusing on the position of the intruder in the quasi-static part of the bed, it can be
deduced from (2.7) that the total solid volume fraction is constant, Φ = cste. Therefore,
for this configuration, a simple equation for the vertical velocity of the large intruder can
be written as

dw̃l

dt̃
+ 1

Stp
w̃l = ρp − ρ f

ρp ΦFl(μ). (2.10)

In this dimensionless equation the fluid only acts through the fluid density coming from
the granular pressure gradient. Therefore, the fluid can be considered as inert and (2.10)
should be valid to model the vertical velocity of an intruder segregating in a dry granular
flow (in this case the granular pressure gradient does not include the fluid density).

Equation (2.10) allows one to identify the main size segregation mechanisms and shows
that the segregation of a large intruder can be seen as a simple relaxation process with
characteristic time Stp.

3. Volume-averaged multi-phase flow model

As discussed in the previous section, the dynamics of a large intruder in an immersed
granular flow made of small particles can be described using interparticle forces published
in the literature. In this section, the goal is to upscale this result by volume averaging the
segregation forces over a collection of large particles in order to make the link between this
discrete picture and continuum models for size segregation. This is done in the framework
of the volume-averaged equations from Jackson (1997, 2000) which provides continuum
equations for the three phases: large particles, small particles and the interstitial fluid.

3.1. Three-dimensional general governing equations
Following Jackson (1997, 2000), the mass and momentum balance equations for each class
are given by

∂ερ f u f

∂t
+ ∇ ·

(
ερ f u f

)
, (3.1)

∂Φ iρpui

∂t
+ ∇ ·

(
Φ iρpui

)
, (3.2)

∂ερ f u f

∂t
+ ∇ ·

(
ερ f u f ⊗ u f

)
= ∇ · S f − ερ f g − nlf f →l − nsf f →s (3.3)

∂Φ iρpui

∂t
+ ∇ ·

(
Φ iρpui ⊗ ui

)
= ∇ · Si − Φ iρpg + nif f →i + nif δ→i, (3.4)

where f is the fluid and indices i = l, s denote the large particle phase and the small
particle phase, respectively (δ = l if i = s and δ = s if i = l). Here, Φ l and Φs are
the volume fractions for the large and small grains and verify Φs + Φ l = Φ where Φ is
the volume fraction of the mixture, i.e. the total solid volume fraction. Consequently, the
fluid volume fraction is ε = 1 − Φ l − Φs and Sk is the stress tensor associated with phase
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k with k = l, s or f . They can be separated into pressure and shear stress contribution

Sk = −pkI + τ k, (3.5)

where τ k is the shear stress tensor and pk is the pressure of phase k. It should be noted
that, for a solid phase, the static pressure arises from the enduring contacts between the
particles. Thanks to the mixture model approaches (Morland 1992), it can be assumed
that each particle phase carries the total overburden pressure pm according to their local
volume fraction as

pi = Φ i

Φ
pm, (3.6)

where m denotes the mixture made of small and large particles. The total overburden
pressure pm is computed using the formulation proposed by Johnson & Jackson (1987).
For further information, the reader is referred to Chauchat et al. (2017) and Chauchat
(2018).

The momentum equations (3.3) and (3.4) contain two terms coming from the
momentum exchange between the different phases: ni f f →i and ni f δ→i. The term ni f f →i
is the averaged value of the resultant forces exerted by the fluid on the particles of phase i.
Jackson (2000) showed that, for a collection of immersed particles, this interaction force
can be written as

nif f →i = −Φ i∇p f + nif
f →i
d , (3.7)

where Φ i∇p f is the buoyancy force exerted by the fluid phase on the particles and ni f f →i
d

is the particle-averaged viscous drag force between the particles and the fluid phase. The
term ni f δ→i is the averaged value of all interacting forces between large and small particle
phases. It can be directly expressed in three dimensions from the local segregation force
of Tripathi & Khakhar (2013) and Guillard et al. (2016).

Therefore, the developed model is general and can be applied to 3-D configurations. For
simplicity and for the purposes of the present study, the model will be only developed for
a 1-D uniform flow.

3.2. Simplified 1-D vertical multi-phase flow model
The multi-phase flow model (3.1) to (3.4) is simplified by considering a uniform flow in the
streamwise direction. From now, all the variables only depend on the vertical position z.
Therefore, the spatially averaged velocity of the phase k can be written as uk = uk(z)ex +
wk(z)ez. The mass conservation equations simplify to

∂ε

∂t
+ ∂εw f

∂z
= 0 and

∂Φ i

∂t
+ ∂Φ iwi

∂z
= 0, (3.8a,b)

and the momentum balance equations in the vertical direction are

ρ f
[
∂εw f

∂t
+ ∂εw f w f

∂z

]
= −ε

∂p f

∂z
− ερ f g cos θ − nl〈f f →l

d 〉 − ns〈f f →s
d 〉, (3.9)
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ρp
[
∂Φ lwl

∂t
+ ∂Φ lwlwl

∂z

]
= −∂pl

∂z
− Φ l ∂p f

∂z
− Φ lρpg cos θ + nl〈f f →l

d 〉 + nl〈 fs→l〉,
(3.10)

ρp
[
∂Φsws

∂t
+ ∂Φswsws

∂z

]
= −∂ps

∂z
− Φs ∂p f

∂z
− Φsρpg cos θ + ns〈f f →s

d 〉 + ns〈 fl→s〉.
(3.11)

In the two last equations, the solid pressures pl and ps are given by (3.6). To solve
these equations, it is necessary to prescribe closures for the spatially averaged fluid/grain
interaction and grain–grain interactions, and for the granular and fluid pressures.

Considering the fluid–grain interaction, both small and large granular phases interact
with the fluid phase through Φ i∂p f /∂z and the drag force ni〈f f →i

d 〉. For an assembly of
particles, the spatial averaging of the vertical total drag force applied by the fluid gives

ni〈f f →i
d 〉 = Φ iρp

ti

(
w f − wi

)
, (3.12)

where ti = ρpd2
i (1 − Φ)3/18η f is the particle response time and di is the particle diameter

of phase i. The factor (1 − Φ)3 is a correction proposed by Richardson & Zaki (1954) to
take into account hindrance effects. Since the drag is linear, the spatial averaging is simply
the drag force applied on one particle (given in (2.4)) multiplied by the number of particles
per unit volume ni = Φ i/Vi (Jackson 2000), where Vi is the volume of a single particle of
phase i.

The granular phases also interact with each other and the grain–grain interaction closure
should be prescribed in the model. For a single large grain in a bath of small particles, it
has been shown in § 2 that small particles exert three forces on a large intruder,

fs→l = f p
d + Πp + fl. (3.13)

In the case of spatially averaged equations, the force balancing the weight Πp already
appears in the term −∂pl/∂z. Hence, the granular interaction forces of (3.13) reduce to the
granular drag and the granular lift force.

To extend these forces to a collection of large particles, the interaction force fs→l is
spatially averaged. Since this force is linear, it amounts to multiplying fs→l by the number
of large particles per unit volume nl = 6Φ l/πd3

l . Therefore, the total solid interaction force
exerted by the small particles on the large ones is given by

nl〈 fs→l〉 = Φ lρp

tls

(
ws − wl

)
+ Φ lFl(μ)

∂pm

∂z
, (3.14)

where tls = ρpd2
l /6cηp is the particle response time for the drag force between small and

large particles. According to Newton’s third law, the force exerted by the large particles on
the small ones (3.11) is

ns〈 fl→s〉 = −nl〈 fs→l〉. (3.15)

The solid mixture phase is made of both particle phases and is noted with i = m.
Its momentum balance is obtained by summing (3.10) and (3.11). Since the mixture
phase does not distinguish between small and large particles, the solid interaction forces
should not appear in this equation. Equation (3.15) ensures that these forces vanish when
developing the mixture momentum equation.
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Multi-phase flow modelling of grain-size segregation

The proposed volume-averaged multi-phase flow model describes size segregation of a
bi-disperse mixture immersed in a fluid. This represents an improvement upon the model
of Thornton et al. (2006), which was based on semi-empirical parametrisation of the
interparticle forces between small and large particles. The present model provides closures
based on forces applied on a single particle, and bridges the gap between granular-scale
processes and continuum modelling in size segregation. This important result will be used
in the following to derive an advection–diffusion model for size segregation.

4. Derivation of the advection–diffusion model

A classical continuum approach to model size segregation is the advection–diffusion
model (Dolgunin & Ukolov 1995; Gray & Thornton 2005; Fry et al. 2019; Umbanhowar
et al. 2019). These models can be derived from the multicomponent mixture theory
(Thornton et al. 2006; Gray & Ancey 2011) by substituting the percolation velocity of one
particle size into the mass conservation equation. The advection and diffusion coefficients
can be modelled using experimental and theoretical closures (Dolgunin et al. 1998; van der
Vaart et al. 2015; Ferdowsi et al. 2017; Cai et al. 2019) or can be derived as a simplification
from the continuum model of Thornton et al. (2006) and Gray & Chugunov (2006). In the
present section, the multi-phase model developed in the previous section (3.9) to (3.11)
makes it possible to derive an advection–diffusion model similar to Thornton et al. (2006)
and Gray & Chugunov (2006), with advection and diffusion coefficients depending on the
segregation and the drag forces (Tripathi & Khakhar 2013; Guillard et al. 2016) determined
in independent idealised configurations.

Combining (3.11), (3.12), (3.14) and (3.15), the momentum balance of small particles
can be written as

ρp
[
∂Φsws

∂t
+ ∂Φswsws

∂z

]
= −∂ps

∂z
− Φs ∂p f

∂z
− Φsρpg cos θ + ρpΦs

ts

(
w f − ws

)

− ρpΦ

tls

(
ws − wm) + Φ lFl(μ)

∂pm

∂z
. (4.1)

The total volume fraction Φ = Φs + Φ l is assumed to be constant and equal to Φmax =
0.61 since particle velocity fluctuations are small. For a deposited bed, the particle
momentum balance in the wall-normal direction reduces to a hydrostatic pressure
distribution for both the fluid and the particle phases (Chauchat 2018)

∂p f

∂z
= −ρ f g cos θ and

∂pm

∂z
= −Φ

(
ρp − ρ f

)
g cos θ. (4.2a,b)

Assuming a constant mixture solid phase volume fraction, the pressure gradient can be
integrated to give the pressure distributions

p f = ρ f g cos θ (h − z) and pm = Φ
(
ρp − ρ f

)
g cos θ (h − z) . (4.3a,b)

Following Thornton et al. (2006), the volume fraction per unit granular volume is
introduced as φi = Φ i/Φ. This notation is more convenient since it ensures φs + φl = 1.
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Using (3.6), the momentum equation (4.1) for small particles is rewritten as follows:

Φρp
[
∂φsws

∂t
+ ∂φswsws

∂z

]
= −pm ∂φs

∂z
+ ρpφsΦ

ts

(
w f − ws

)

− ρpΦ

tls

(
ws − wm) + φlΦFl(μ)

∂pm

∂z
. (4.4)

Using the same scalings as in the Lagrangian equation (2.7) for a single intruder, the
equation (4.4) is made dimensionless as follows:

∂φsw̃s

∂ t̃
+ ∂φsw̃sw̃s

∂ z̃
= − p̃m

Φ

∂φs

∂ z̃
+ φs

St f

(
w̃ f − w̃s

)
− (w̃s − w̃m)

Stp
+ φlFl(μ)

∂ p̃m

∂ z̃
. (4.5)

As shown in § 2, St f � Stp in the bed and the fluid drag force can be neglected.
Furthermore, assuming a quasi-steady state and neglecting inertial terms, (4.5) can be
rewritten as

− p̃m

Φ

∂φs

∂ z̃
− (w̃s − w̃m)

Stp
+ φlFl(μ)

∂ p̃m

∂ z̃
= 0. (4.6)

Assuming a constant depth flow, w̃m = 0 and the flux of small particles becomes

φsw̃s = −φs

Φ
p̃mStp

∂φs

∂ z̃
+ φlφsFl(μ)Stp

∂ p̃m

∂ z̃
. (4.7)

Equation (4.7) is then substituted in the mass conservation equation (3.8a,b) to obtain the
following advection–diffusion equation for the percolation of small particles:

∂φs

∂ t̃
+ ∂

∂ z̃

(
φlφsSr

)
= ∂

∂ z̃

(
D

∂φs

∂ z̃

)
, (4.8)

with

Sr = Fl(μ)Stp
∂ p̃m

∂ z̃
and D = φsp̃mStp

Φ
. (4.9a,b)

Since the pressure gradient is negative, Sr is negative which ensures a downward flux for
the small particle phase.

In (4.8), Sr is the segregation number or advection coefficient of small particles into
large particles and D is the diffusion coefficient. Here, (4.9a,b) provides physical closures,
which are directly obtained from volume averaging of the particle-scale segregation forces.
The advection coefficient Sr is therefore expressed as a product between the segregation
term Fl(μ)∂ p̃m/∂ z̃, which quantifies the ability for the small particles to fall downward,
and the solid Stokes number, which quantifies the drag force exerted by the other grains
counteracting this downward movement. It is interesting to note that the granular Stokes
number is present in both coefficients, which indicates that it is a key parameter for the
advection and the diffusive remixing.

These results improve upon the original model from Thornton et al. (2006) and Gray
& Chugunov (2006) since the experimentally based closures (Tripathi & Khakhar 2013;
Guillard et al. 2016) make it possible to link both the advection and the diffusion
coefficients to the local physical parameters of the granular flow. This result not only
provides closures for the advection–diffusion model based on local granular forces but
also highlights the key local physical mechanisms controlling segregation and diffusion.
Since the fluid is shown to be inert, this equation is also valid for dry granular flows.

In the following, the relevance of the obtained advection–diffusion model with respect
to the multi-phase flow model will be tested.
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5. Comparison with existing discrete numerical simulations

In this section, the multi-phase flow model presented in § 3 and the corresponding
advection–diffusion model presented in § 4 are tested against the discrete numerical
simulations of Chassagne et al. (2020b). This study focused on the segregation of small
particles initially resting on top of large ones. It provides a comprehensive dataset to
evaluate local granular parameters such as the volume fraction and the segregation
velocities. In addition, since it is not the purpose of this work to develop a granular
rheology, the shear stress and shear rate profiles obtained from the DEM will be used
as input parameters for the continuum models.

The 3-D DEM configuration and the main results from Chassagne et al. (2020b) are
first summarised (§ 5.1). Then, in § 5.2, the multi-phase flow model is compared with the
DEM results using default parameters (see §§ 3 and 4) for the segregation of the small
particles. Finally, in § 5.3, the results predicted by the advection–diffusion model and the
multi-phase flow model are compared to determine the validity of the former with respect
to the latter.

5.1. DEM investigation of Chassagne et al. (2020b)
In this section, the configuration explored and the main results of Chassagne et al.
(2020b) are briefly presented. The authors investigated grain-size segregation in turbulent
bedload transport using a coupled fluid–DEM originally developed by Maurin et al.
(2015) and used to study bedload rheology (Maurin et al. 2016) and the slope influence
(Maurin, Chauchat & Frey 2018). For further details, the interested reader is referred
to Chassagne et al. (2020b). The 3-D bi-periodic DEM set-up consisted in depositing
a layer of small particles over large ones, and letting the particles be entrained by the
fluid flow at a fixed Shields number. The latter is the dimensionless fluid bed shear stress
Sh = τ f /[(ρp − ρ f )gdl] and was taken equal to 0.1. The bed slope was fixed to 10 %,
which is representative of mountain streams. The size ratio was taken as r = 1.5 with small
particles of diameter ds = 4 mm and large particles of diameter dl = 6 mm. The large and
small particles were assimilated to a number of layers, Nl and Ns. The number of layers
of a given class represents the height, in terms of particle diameter of this class, occupied
by particles if the concentration was equal to the random close packing (Φmax = 0.61). In
this way, the bed height at rest was defined as h = Nldl + Nsds and was fixed to h = 10dl
with a random close packing volume fraction Φmax = 0.61 (profile in figure 2a). In the
study of Chassagne et al. (2020b), different simulations have been performed with Ns
varying from 0.01 (a few isolated particles) to Ns = 2. In this section it was decided that
the comparison would be made with Ns = 1.5. The bulk response of the granular mixture
to this fluid forcing is represented by the dimensionless mixture streamwise velocity profile
in figure 2(a). The inset is a semi-log plot of the dimensionless velocity profile and shows
that it is exponential. As shown in figure 2(b), the linearity of the curve in the semi-log
plot confirms that the shear rate is exponentially decreasing in the quasi-static part of the
bed (delimited by the two horizontal black dashed lines). As expected for a uniform flow,
the mixture shear stress τ̃m

xz shown in figure 2(c) is linear with depth. For both quantities,
the following fits were proposed and plotted as a red dotted line in figure 2:

˜̇γ m = γ0 ez̃/s0 and τ̃m
xz = a0z̃ + τ0. (5.1a,b)

The simulations performed by Chassagne et al. (2020b) in this configuration were focused
on the downward segregation of small particles. It was observed that the layer of small
particles percolates rapidly for z̃ > 8.5 (flowing layer) and then slows down below (this
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limit is marked in figures 2(b) and 2(c)). Chassagne et al. (2020b) showed that the small
particles are advected downward like a travelling wave into the bed made of large particle
with a layer of constant thickness. As figure 2(e) shows, the small particle concentration
has a Gaussian-like shape and remains self-similar in time while segregating. The centre
of mass of small particles, z̃c, is therefore representative of the dynamics of the entire
layer. Chassagne et al. (2020b) observed that the small particle layer travels down as a
logarithmic function of time

z̃c(t) = −a1 ln t̃ + b, (5.2)

where a1 is a constant characterising the segregation velocity (dz̃c(t)/dt̃ = −a1/t̃). The
authors demonstrated that this logarithmic descent of small particles is a consequence of
the dependency of the segregation velocity on the inertial number as

dz̃c

dt
∝ I0.85(z̃c). (5.3)

Using (5.3) in the framework of the advection–diffusion model of Thornton et al. (2006)
and Gray & Chugunov (2006) (see (1.5)) it was shown that the advection coefficient could
be written as

Sr = Sr0I0.85, (5.4)

where Sr0 = 0.049, extending the inertial number dependency found by Fry et al. (2018) to
bi-disperse size segregation in the quasi-static regime. Then, with the help of a travelling
wave method, they evidenced that the small particles percolate as a layer and with a
self-similar concentration profile because the ratio between the advection coefficient and
the diffusion coefficient is constant. The Péclet number reads

Pe = Sr

D
, (5.5)

and is therefore constant with z̃, so that the diffusion coefficient has to have the same
dependency on the inertial number as the segregation coefficient

D = D0I0.85, (5.6)

where D0 is taken as D0 = 0.01 and should be pressure independent (Fry et al. 2019).
This work also demonstrated that the dynamics of the fine particle layer is controlled by

its bottom position, which acts as a lower bound for the segregation velocity. In this way,
the particles in the layer cannot segregate faster.

The numerical resolution of the 1-D multi-phase model a priori requires us to solve
the granular rheology in order to estimate the granular viscosity required to evaluate the
granular drag force contribution. The goal of the present study is to focus on grain-size
segregation modelling. In addition, the results of Chassagne et al. (2020b) were obtained
in the quasi-static regime, for which there is still no consensus regarding granular rheology.
For these reasons, the granular viscosity is directly determined by the DEM results here.
This makes it possible to focus on the effect of the segregation model and to put aside
potential discrepancies linked to a non-accurate description of the granular rheology.
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Figure 2. Profiles and configuration from the DEM simulations. (a) Streamwise mixture velocity profile in
the bed (——, blue solid line) and mixture volume fraction (——, green solid line). The inset is the semi-log
plot of the velocity profile. (b) Solid shear rate (——, blue solid line) and the corresponding fit ˜̇γ m = γ0 ez̃/s0

(- - - -, red dashed line) with γ0 = 1.64 × 10−7 and s0 = 0.74. (c) Solid shear stress and the corresponding fit
τ̃m

xz = a0z̃ + τ0 (- - - -, red dashed line) with a0 = −0.078 and τ0 = 0.91. The top and lower boundaries of the
quasi-static bed are represented by (- - - -, black dashed lines). (d) Sketch of the numerical experiment with the
input profiles for the rheology. (e) Concentration profile of small particles at the initial state for the multi-phase
flow model (——, green solid line), the DEM (- - - -, black dashed line) and the mixture concentration profile
φ (——, black solid line).

The friction coefficient is therefore computed from the DEM results using the definition

μ = |τm
xz|

pm . (5.7)

Similarly, the granular viscosity is computed using the definition

ηp = |τm
xz|∣∣ ˙γ m
xz

∣∣ . (5.8)

As shown by the red dashed lines in figures 2(b) and 2(c), the fits presented in (5.1a,b)
match the DEM results in the region 8.5 > z̃ > 3. Thus, using these expressions in
(5.8) provides an accurate estimate of the granular viscosity for the particle–particle
drag closure. For this reason, the validation of the multi-phase flow model will only be
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Figure 3. Spatio-temporal plot of the small particle concentration in the bed obtained with (a) the
multi-phase model, (b) the DEM simulation.

carried out in this part of the bed. Therefore, the initial state consists in placing the small
particles in the upper limit of the quasi-static part with the centre of mass z̃0

c = 8.5. The
sketch of this configuration is shown in figure 2(d). Figure 2(e) shows the small particle
concentration profile of this numerical set-up at the initial state. The initial concentration
is taken with a Gaussian fit on the DEM initial concentration (figure 2e), and ensures that
the mass of particles is the same in the DEM and in the continuum simulations.

5.2. Comparison with the multi-phase flow model
The system of partial differential equations (3.8a,b)–(3.11) is solved numerically for the
configuration shown in figure 2(d) with the initial concentration profile of figure 2(e). In
these equations, the empirical segregation function is Fl(μ) and the drag coefficient c is
equal to 3, as suggested by Tripathi & Khakhar (2013). Because the fluid is incompressible,
there is no equation of state for the fluid pressure. Nevertheless, remembering that
ε + Φ = 1 and defining the volume-averaged velocities, w = εw f + Φwm, it can be
demonstrated that the particle–fluid mixture is incompressible. A PISO (pressure implicit
with splitting of operators) algorithm classically developed for thw incompressible
Navier–Stokes equations is used to solve the pressure–velocity coupling. As the fluid
pressure p f is the sum of the hydrostatic pressure and of the excess pore pressure
p f = p f + ρ f gz, the PISO algorithm consists in solving the momentum balance equations
without p f in a predictor step. Then, using the predicted velocity fields, a Poisson equation
is solved to find p f . Once the pressure is found, the velocity fields are corrected. This kind
of algorithm has already been used to model sediment transport in Chauchat et al. (2017)
and Chauchat (2018).

Figure 3 shows the results of the spatio-temporal evolution of the small particle
concentration for the multi-phase flow model (figure 3a) and for the DEM (figure 3b).
First, it can be seen that the dynamics predicted by the multi-phase flow model is similar
to the DEM. The position of the bottom of the layer is approximately the same in
both cases. More quantitatively, the centre of mass z̃c of the small particle layer as a
function of time is compared with the DEM in figure 4(a). After a first transient phase
(t̃ > 1 × 103), the centre of mass position is linear in the semi-log plot, indicating that the
logarithmic descent observed in the DEM simulation is well reproduced by the multi-phase
flow model. The slope of the curve, representing coefficient a1 of (5.2) is 0.68 in the
DEM simulation and 0.49 for the multi-phase flow model, corresponding to an error
of 28 %. In addition, figure 4(b) shows that, in both models, the bottom of the layer is
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Figure 4. Results of the simulation for the multi-phase flow model (-·-·-, red dashed dot), the
advection–diffusion model of (4.8) (——, green solid line) and the DEM (- - - -, black solid line). (a) Temporal
evolution of the centre of mass. (b) Concentration profiles of small particles at the end of the simulation
(t̃ 
 60 000); �, represents the maximum concentration of the profiles.

positioned at the same depth indicating that the multi-phase model reproduces well the
bottom controlled behaviour observed by Chassagne et al. (2020b) with DEM simulations.
However, the Gaussian-like profile is not reproduced by the multi-phase flow model and a
wider profile is obtained. In figure 3(a) the maximum concentration max(φs) (indicated by
� in figure 4b) is almost two times smaller than the one predicted by the DEM simulation,
while the extent of the small particle layer is much larger. These results indicate that,
with the current parametrisation the multi-phase flow model is relevant to qualitatively
predict the segregation dynamics. However, the error on the segregation velocity and
the discrepancies on the concentration profile clearly show that the model needs to be
improved.

5.3. Evaluation of the advection–diffusion model
In order to determine the ability of the advection–diffusion model to reproduce the same
results as the multi-phase flow model, (4.8) is solved numerically. The resolution strategy
is based on a conservative Godunov schemes where a no flux condition is applied at the
bottom and on top of the vertical domain. A vertical discretisation of dz̃ = h/80 is taken
and the time step is computed in order to satisfy the Courant–Friedrichs–Lewy (CFL)
condition. The initial solution is the same than in the multi-phase flow (figure 2e).

The numerical solution at time t̃ = 60 000 is plotted in figure 4. Both the centre
of mass (figure 4a) and the concentration profile (figure 4b) are almost superimposed
with the multi-phase flow model solution, only slightly differing by numerical diffusion.
Therefore, both models can be considered as strictly equivalent, meaning that the physical
behaviour of the segregation forces added to the momentum equation of the small particles
is accurately predicted by the single advection and diffusion coefficients of equation
(4.8). Moreover, when deriving the advection–diffusion equation, it was assumed that
the mixture volume fraction Φ = cste, the vertical acceleration of the small particles, the
vertical mixture velocity and the fluid drag were negligible. The strong agreement between
the models demonstrate that these assumptions are valid.

Equation (4.8) represents an important step in the upscaling since the behaviour of small
particles can be predicted without solving the entire multi-phase flow model, providing a
speed-up of one thousand for the numerical resolution of the equations. In the light of this
result, the bi-disperse segregation problem can be simply viewed as a competition between
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the advection coefficient Sr and the diffusion coefficient D of small particles. The interplay
between both coefficients has been explored in more details by Fan et al. (2014b).

6. Discussion

The multi-phase flow model and the associated advection–diffusion model are able to
reproduce qualitatively the DEM simulations and the main properties of segregation in
bedload transport obtained by Chassagne et al. (2020b) (bottom controlled segregation,
logarithmic descent of the small particles). However, the segregation velocity is lower
than in the DEM simulation and the shape of the small particle concentration profile
is not adequately reproduced. So far, the inter-particle drag force and the segregation
force from Guillard et al. (2016) and Tripathi & Khakhar (2013) have not been modified.
Guillard et al. (2016) measured numerically the segregation force for a single intruder in a
2-D configuration and Tripathi & Khakhar (2013) developed their study in the context of
density-driven segregation. These configurations are not general and the drag coefficient
c as well as the empirical segregation function Fl(μ) are expected to be different when
considering an ensemble of particles since there could be some collaborative effects that
are not taken into account in these forces. Therefore, in § 6.1, a sensitivity analysis to
the empirical segregation function is presented. Then, in § 6.2, new formulations of the
empirical segregation function Fl(μ) and of the drag coefficient c will be proposed based
on the DEM results.

As the advection–diffusion equation results are strictly identical with the multi-phase
flow equations, the discussion and the associated simulations will only be performed with
the advection–diffusion equation.

6.1. Investigation of the empirical segregation function Fl

Numerical data from Guillard et al. (2016) for the empirical segregation function Fl(μ)

exhibit a significant scatter and it is possible to show that a constant function could also fit
the data (see Appendix A). In this section, an analysis of the sensitivity to the empirical
segregation function, taken as constant and varying from Fl = 1 to Fl = 15, is presented.

Figure 5(a) shows the temporal evolution of the small particle centre of mass for the
different values of the empirical segregation function Fl. The linear evolution in the
semi-logarithmic plot is conserved with the same slope (coefficient a1 in (5.2)), whatever
the value of the empirical segregation function, meaning that the segregation velocity
dz̃c/dt̃ is not modified when changing the empirical segregation function. Increasing Fl
only makes the curves shift vertically. Figure 5(b) shows that the maximum concentration
is better predicted when increasing the empirical segregation function. On reaching Fl =
15, agreement with DEM results is perfect. The previous simulation, where the empirical
segregation function Fl is a function of the friction coefficient μ, is also plotted in this
figure. It is interesting to note that simulation with Fl = 1 is almost superimposed with
the one obtained with Fl(μ). These observations tend to show that the friction coefficient
dependency has a small influence on the size segregation configuration investigated.
Therefore, taking Fl as constant is a good approximation, at first order.

Chassagne et al. (2020b) showed that the advection coefficient Sr was a function of the
inertial number I (see (5.4)) and linked the logarithmic descent to the exponential form
of I in Sr. In the proposed model, the advection coefficient Sr = FlStp∂ p̃m/∂ z̃ (4.9a,b).
In this coefficient, since the solid pressure gradient is constant in the bed (4.2a,b) and
Fl = cste, there is only one non-constant variable which is the inverse of the granular
viscosity 1/ηp appearing in the granular Stokes number (2.9). As figure 5(a) shows that
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Figure 5. Comparison with the DEM (- - - -, black dashed line) for various values of Fl = cste for the
temporal evolution of (a) the centre of mass and (b) the maximum concentration of φs.

the logarithmic descent is still preserved with this parametrisation, this demonstrates
that the viscosity profile is mainly responsible for the logarithmic descent. Therefore, in
the proposed advection coefficient Sr, the empirical segregation function Fl controls the
strength of the segregation force and can be seen as a forcing parameter. In contrast, the
velocity at which the small grains are descending is controlled by the granular viscosity in
the granular Stokes number Stp. In this way, the segregation problem can simply be seen
as the settling of small particles under a force proportional to the empirical segregation
function Fl, into a complex fluid having a variable viscosity.

It should be noted that there is a direct relation between the dimensionless granular
viscosity and the inertial number (see Appendix B) written

I = μ
√

p̃m

η̃p , (6.1)

where η̃p = ηp/ρpdlW is the dimensionless granular viscosity and μ = |τ̃m
xz|/p̃m is the

friction coefficient. Since the variation of μ and
√

p̃m is small compared with the
exponential profile of η̃p, the inversely proportional relation between the granular viscosity
and the inertial number shows that the inertial number dependency found by Chassagne
et al. (2020b) can be seen as a dependency on the inverse granular viscosity, confirming
the important role of the granular viscosity in the segregation dynamics.

Figure 5(b) showed that a better maximum concentration was predicted with Fl = 15.
However, the value of the empirical segregation function Fl should have no influence on
the diffusion as D = φs/Φp̃mStp. This influence can be explained by the Péclet number
Pe = Sr/D. Indeed, when Fl increases, the advection coefficient Sr increases as well and
makes the Péclet number higher. As a result, the diffusive effect becomes small compared
with the advection and, thus, the small particles stay more concentrated. However, the
dynamics of the centre of mass shows a better agreement for Fl = 1 (see figure 5a) than
for Fl = 15, meaning that the diffusion coefficient needs to be improved.

The advection coefficient Sr and the diffusion coefficient D have been plotted in
figures 6(a) and 6(b) with Fl = 1, for φs = max(φs). For z̃ > 7, Sr is close to the values
predicted by the DEM. Under this limit, both curves are exponentially decreasing into
the bed but with a different slope, leading to discrepancies. This shows that the 1/ηp

dependency has a fundamental role in the vertical structure of the advection coefficient
Sr. Yet, another dependency with depth is probably missing in the empirical segregation
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Figure 6. (a) Advection coefficient in the bed (4.8) withFl = 1, for Ns = 1.5 (—–, blue solid line) and Sr0I0.85

proposed by Chassagne et al. (2020b) (- - - -, black dashed line). (b) Diffusion coefficient in the bed from (4.8)
for φs = max(φs) for the case Ns = 1.5 (—–, blue solid line) and D0I0.85 proposed by Chassagne et al. (2020b)
(- - - -, black dashed line).

function or in the drag coefficient c to find again a similar slope to the DEM. Surprisingly,
the proposed diffusion coefficient has the same slope as the one predicted by the DEM,
which means that it contains the correct depth dependency. However, its value is too high
by a factor ten, explaining why the advection–diffusion results are too diffusive.

6.2. Missing dependencies in the particle-scale forces
In the present paper, the advection and diffusion coefficients (4.9a,b) have been derived
from particle-scale segregation and solid drag forces of Guillard et al. (2016) and Tripathi
& Khakhar (2013). However, figure 6 shows that both coefficients should be improved
so as to match the DEM results. The segregation and solid drag forces of Guillard
et al. (2016) and Tripathi & Khakhar (2013) have been established in idealised granular
segregation configurations (e.g. unique intruder, simple forcing, 2-D DEM) so that one can
expect the two formulations to miss some dependencies when considering more general
cases (mixture of small and large particles, 3-D modelling or complex forcing). Such
dependencies probably lie in the drag coefficient c and the empirical segregation function
Fl contained in the advection and diffusion coefficients. While the drag coefficient c
was taken as constant in their study, Tripathi & Khakhar (2013) and Duan et al. (2020)
suggested that it could depend on the local concentration of particles. Similarly to a
hindrance function in a fluid flow, one indeed expects an increase of the effective solid drag
force on a particle with increasing concentration. This dependency of the drag coefficient
in the local particle concentration should also impact the diffusion coefficient profile (see
figure 6b) and makes it possible to match the DEM. In addition, to correct the slope of the
advection coefficient Sr (see figure 6a), only the empirical segregation function Fl should
vary with depth.

As detailed in § 5.1, Chassagne et al. (2020b) have been able to express the advection
and diffusion coefficient dependencies on the inertial number I (see (5.4) and (5.6)).
In the following, both DEM and advection–diffusion coefficients are compared so as to
extract the potential missing dependencies of Fl and c from the DEM coefficients and to
propose new formulations of these parameters. Then, it is verified that the results from the
advection–diffusion model are consistent when using these proposed closures.
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z̃

10−4 10−3 10−2 10−1
3

4
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7
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9

I 0.85, �—p̃mI/μ

�—p̃mI/μ

I 0.85

Figure 7. Value of I0.85 computed from DEM results (——, black solid line) and its exponential fit I′
0ez̃/s2

(- - - -, red dashed line) compared to
√

p̃mI/μ (——, yellow solid line) and its exponential fit D′
0 ez̃/s3 (- - - -,

black dashed line); I′
0 = 7.52 × 10−7, s2 = 0.8, D′

0 = 8.46 × 10−7 and s3 = 0.78.

In order to compare the advection and diffusion coefficients to the DEM and to find the
missing dependencies, it is first shown that the coefficients of equation (4.9a,b) can be
expressed with an inertial number dependency as in the DEM. Indeed, as already shown
in (6.1), the granular Stokes number can be rewritten as a function of the inertial number I

Stp = I

6cμ
√

p̃m
. (6.2)

With this new definition, the advection and diffusion coefficients obtained in (4.9a,b) can
be rewritten as a function of the inertial number I

Sr = IFl

6cμ
√

p̃m

∂ p̃m

∂ z̃
and D = φs

√
p̃mI

Φ6cμ
. (6.3a,b)

One can notice that
√

p̃mI = ˜̇γ , which makes the diffusion coefficient directly proportional
to the shear rate. Such a dependency for the diffusion coefficient was found in a size
bi-disperse case by Cai et al. (2019) and Fry et al. (2019) with DEM simulations. This
shows that the particle–particle force-based model is able to explain a dependency found
in different experiments. It represents a powerful argument to show the robustness of the
proposed model. Yet, the power 0.85 highlighted by the DEM does not seem to appear. In
figure 7 the profile of

√
p̃mI/μ, the profiles of I0.85 from the DEM and from exponential

fitting are plotted. One can observe that values only differ by a factor D′
0/I′

0 = 1.13 and
that the exponential evolution with depth is the same, which proves that, in this case,√

p̃mI
μ

∝ I0.85. (6.4)

Such a result shows that the diffusion coefficient of the proposed model (6.3a,b) has the
same dependency with I0.85 as the diffusion coefficient proposed by Chassagne et al.
(2020b). This explains the identical evolution with depth between both coefficients in
figure 6(b), and shows that the advection equation and the multi-phase flow model are
physically consistent.

Assuming that the drag coefficient includes the accurate dependencies, the following
equality should be obtained between diffusion coefficients of the DEM and the one
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proposed in (6.3a,b):

φs
√

p̃mI
Φ6cμ

= D0I0.85. (6.5)

As demonstrated in (6.4),
√

p̃mI/μI0.85 = C0, where C0 is a constant (see Appendix C for
the details) the drag coefficient c can be deduced from (6.5):

c(φs) = C0

6ΦD0
φs = 31φs. (6.6)

As a consequence of this linear scaling in concentration, the dependency on the small
particle volume fraction vanishes in the diffusion coefficient (4.9a,b). This modification
will tend to smooth out the small particle concentration profile. In this drag coefficient,
when φs → 0 (i.e. one small particle in a bath of large particles), the drag coefficient
vanishes while it should reach a constant value, c = 3 as shown by Tripathi & Khakhar
(2013). To ensure a consistent formulation, it is therefore proposed that c(φs) reads

c(φs) = 3
(

1 + 28
3

φs
)

, (6.7)

which tends to 3 when φs → 0 and to 31 when φs → 1.
As mentioned in the last section, the empirical segregation function Fl is expected to

depend on depth (see figure 6a). In this way, the advection coefficient should correspond
to the DEM and it follows

IFl

6c(φs)μ
√

p̃m

∣∣∣∣∂ p̃m

∂ z̃

∣∣∣∣ = Sr0I0.85. (6.8)

From this equation and using (6.4), one can express the empirical segregation function, for
ρp /= ρ f , as

Fl(p̃m, φs) = F0c(φs)p̃m, (6.9)

where F0 = 6Sr0ρ
p/(C0Φ(ρp − ρ f )). This result is the consequence of the scaling

obtained for the advection coefficient in the DEM simulation. In the latter, only the
local solid volume fraction φs and the pressure p̃m are varying. Other dependencies can
therefore be contained in Sr0 and should not be interpreted. Focusing on the meaningful
terms, the empirical segregation function is logically found to depend on the small
particle concentration, as expected when considering a mixture of particles. The pressure
dependency suggests that the segregation function could depend on the stress state and
that the local pressure could drive the lift force. Guillard et al. (2014) found the lift force
to increase with depth until a saturation depth where this force becomes constant. The
pressure dependency found in (6.9) could explain the increasing lift force with depth and
imply that in the studied configuration the saturation depth is not reached.

With the new formulations of the solid drag coefficient c(φs) and the empirical
segregation function Fl(p̃m, φs), it is verified that the DEM results can be reproduced. This
is done with simulations accounting for different initial quantities of small particles (Ns =
0.5, 1, 1.5, 2). Figure 8 shows the results for the time evolution of the centre of mass and
the final concentration profile. Both the mass centres and the final concentration profiles
are fairly well superimposed with the DEM results. Therefore, the new parametrisation
is consistent with the DEM simulations. The concentration profile with the original
parametrisations of c and Fl(μ) (see figure 4b) has also been plotted in figure 8 (Ns = 1.5).
The shape of the final concentration profile has drastically changed, from a bell shape to
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Ns = 0.5 Ns = 1.0 Ns = 1.5 Ns = 2.0

z̃c

z̃

φs φs φs φs

t̃ t̃ t̃ t̃

(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 8. (a–d) Temporal evolution of the centre of mass for Ns = 0.5, 1, 1.5, 2. (e–h) Final small particle
concentration profile for Ns = 0.5, 1, 1.5, 2. In the panels, (- - - -, black dashed line) are the DEM results from
Chassagne et al. (2020b). The concentration profile obtained without any parametrisation, in the case Ns = 1.5
(from figure 4b), has also been plotted (· · · · · · ·).

the expected Gaussian-like shape. This is attributed to the small particle concentration
dependency in the drag coefficient, which cancels the original concentration dependency
in the diffusion coefficient.

Lastly, note that changing the parametrisation of the forces still yields physical solutions
which proves that the advection–diffusion model and the corresponding multi-phase flow
model are physically consistent and robust.

6.3. Influence of the size ratio
Guillard et al. (2016) and Jing et al. (2020) showed that the segregation force depends on
the size ratio r = dl/ds and exhibits a maximum for a size ratio of r = 2. Schlick et al.
(2015) found the segregation velocity of an ensemble of small particles to be dependent on
the logarithm of the size ratio for r < 3 and also found the segregation velocity to reach
its maximum for r ∼ 2. Based on DEM simulations, Chassagne et al. (2020b) also studied
the size-ratio dependency. Surprisingly, it was found that the segregation velocity of the
percolating small particles was a monotonic increasing function of r. Best fit of the DEM
results suggested the following dependency f (r) = 0.45(exp((r − 1)/1.59 − 1)) for the
advection coefficient Sr. Further studies on the effect of the size ratio on segregation are
needed to explain the difference between the studies of Golick & Daniels (2009), Schlick
et al. (2015) and Guillard et al. (2016). A potential reason could lie in the configuration
difference. For example, it could shift the value of the maximum segregation efficiency to
higher values of r that have not been investigated by Chassagne et al. (2020b).

This dependency is introduced into the empirical segregation function Fl as follows:

Fl(p̃m, φs, r) = F0f (r)c(φs)p̃m. (6.10)

916 A26-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

21
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 3
7.

16
5.

13
6.

12
9,

 o
n 

12
 A

pr
 2

02
1 

at
 1

5:
37

:4
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.218
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


H. Rousseau and others
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( f ) (g) (h) (i) ( j)

Figure 9. (a–e) Temporal evolution of the centre of mass for Ns = 1 and r = 1.25, 1.5, 1.75, 2, 2.25. ( f –j)
Final small particle concentration profile for Ns = 1 and r = 1.25, 1.5, 1.75, 2, 2.25. In these panels, (——,
black solid line) corresponds to the advection–diffusion model and (- - - -, black dashed line) are the DEM
results from Chassagne et al. (2020b).

Using this parametrisation, simulations have been performed for r = 1.25, 1.5, 1.75, 2,

2.25. The results are plotted in figure 9 and compared with DEM simulations. For each
case, the centre of mass position is in very good agreement with the DEM simulations.
For the lower size ratio, the concentration profiles are superimposed with the DEM results
while for the higher size ratios (r = 2 and r = 2.25) the maximum concentrations are
slightly higher than the DEM. This indicates that the model is not diffusive enough.
Indeed, the size-ratio dependency has only been introduced in the advection coefficient.
As shown in § 6.1, the shape of the concentration profile results from a subtle balance
between advection and diffusion through the Péclet number, Pe. For the highest size
ratio, this balance is not perfectly reproduced by the proposed model, which indicates
that the diffusion coefficient should also depend on the size ratio. This would imply that
the granular Stokes number also depends on the size ratio. It could explain why Guillard
et al. (2016) found a maximum segregation force for a size ratio r = 2, while Chassagne
et al. (2020b) found the advection coefficient Sr to increase exponentially with the size
ratio. Further research is needed to elucidate this point through a detailed investigation of
the granular Stokes number dependency on the size ratio.

7. Conclusion

In this contribution, size segregation in bi-disperse systems has been investigated with
a special focus on bedload transport. The originality of the work presented herein is to
propose a new multi-phase flow approach, derived from a volume-averaging technique,
based on the most recent advances in particle–particle forces, namely the segregation force
or lift force from Guillard et al. (2016) and the drag force from Tripathi & Khakhar (2013).
The proposed multi-phase flow model formulation is very general and it can be applied
to any immersed granular flow configuration. In a subsequent step, following the same
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procedure as in Thornton et al. (2006), an advection–diffusion model is derived from the
multi-phase flow equations. This derivation allows us to identify the dependencies of the
advection and diffusion coefficients on the local physical parameters of the flow such as
the volume fraction of small particles, the mixture granular pressure and its gradient, the
granular Stokes number and the segregation parameter.

Both models have been tested against the DEM simulations of Chassagne et al.
(2020b) for bi-disperse turbulent bedload transport. Without any tuning of the forces from
Guillard et al. (2016) and Tripathi & Khakhar (2013), both continuum models qualitatively
reproduce the main features of size segregation. This demonstrates that the scaling of the
advection coefficient with the inertial number observed by Fry et al. (2018) and Chassagne
et al. (2020b) can be explained thanks to the dependency of the advection coefficient on
the granular Stokes number and the underlying presence of the granular viscosity. Using
the discrete element simulation results, improved parametrisations for the advection and
diffusion coefficients have been proposed. They suggest that the empirical segregation
function from Guillard et al. (2016) and the drag coefficient from Tripathi & Khakhar
(2013) should incorporate a dependency on the small particle concentration. At last, the
influence of the size ratio has been investigated and a dependency of the segregation
function on the size ratio has been proposed.

In terms of perspectives for granular flows, the continuum models proposed herein
are very general and should also apply to dense dry granular flows. These models
represent a general framework for developing and testing improved parametrisations
for the segregation and granular drag forces in different flow configurations. Further
work is needed to identify and propose more robust concentration, depth and size-ratio
dependencies of the empirical dimensionless coefficients appearing in both granular
forces. Concerning the upscaling of size segregation processes in sediment transport
applications, two routes are opened. The first one consists in implementing the proposed
multi-phase flow model in a 3-D numerical model, such as sedFOAM (Chauchat
et al. 2017), for the simulation of size segregation in complex sediment transport
applications such as riverbed armouring (Frey & Church 2009), scour around an
hydraulic structure (Nagel et al. 2020) or wave-driven sediment transport involving sand
mixtures (O’Donoghue & Wright 2004). The second route would be to couple the
advection–diffusion model with a shallow water model for the fluid flow. Such a model
would make it possible to address size segregation at larger scales while taking into
account granular-scale processes in a physically consistent way (Woodhouse et al. 2012;
Denissen et al. 2019).
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Appendix A. New formulation of F(μ) for a single large particle

In this part, it is shown that the empirical function F(μ) of (1.3a,b) does not make it
possible to define the total segregation force as a sum of the granular buoyancy and the
granular lift force. Therefore, a new formulation is proposed.

Considering an immobile bed, segregation should stop and therefore wl = 0. In this
case, the drag forces vanish and the friction coefficient should be equal to the static friction
coefficient μ = μc. Therefore, the segregation force of (1.2) counter-balances the weight
of the particle as (

ρp − ρ f
)

g cos θ + F(μc)
∂ps

∂ z̃
= 0. (A1)

For a dense flow with small velocity fluctuations, the small particle pressure is the
lithostatic pressure ps = Φmax(ρ

p − ρ f )g cos θ(h − z). The particle pressure gradient is
therefore ∂ps/∂z = −Φmax(ρ

p − ρ f )g cos θ . Introducing this expression in (A1), it finally
imposes that

F(μc) = 1
Φmax

. (A2)

The condition (A2) shows that the segregation force should balance the hydrostatic particle
pressure, at rest. However, the functional form (1.3a,b) proposed by Guillard et al. (2016)
and plotted in figure 10, does not satisfy condition (A2) in the quasi-static regime (μ <

0.3). In order to verify condition (A2), the following form is proposed:

F(μ) = 1
Φmax

+ Fl(μ), (A3)

with Fl(μ) = (1 − exp(−70(μ − μc))). Equation (A3) is plotted in figure 10. It can be
observed that it is close to (1.3a,b) for μ � μc but decreases to 1/Φmax in the static
regime. This makes it possible to write the segregation force as

fseg = Vl

(
1

Φmax
+ Fl(μ)

)
∂ps

∂z
, (A4)

where Πp = Vl/Φmax∂ps/∂z is the granular buoyancy force and fl = VlFl(μ)∂ps/∂z is the
granular lift force.

Appendix B. Link between the viscosity ηp and the inertial number I

The inertial number of large particles is

I = γ̇ mdl√
pm/ρp . (B1)

Considering that

ηp = |τm
xz|

|γ̇ m| and τm
xz = μpm, (B2a,b)

the inertial number can be written as

I = μdl
√

pmρp

ηp . (B3)

Then, making ηp dimensionless with the scaling ρpdlW, one can obtain

I = μ
√

p̃m

η̃p
. (B4)
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Figure 10. Empirical segregation function F(μ) of the segregation force fseg = VlF(μ)∂ps/∂z found by
Guillard et al. (2016) as a function of the local friction coefficient μ. Here, + are the simulation results found
by Guillard et al. (2016) using DEM, (——, red solid line) is the function they proposed and (——, blue solid
line) is F(μ) = 1/Φ + (1 − exp(−70(μ − μc))), the improved function proposed.

Appendix C. Deriving of the parameters Fl and c using DEM results

In this appendix, the methods to derive the advection and diffusion coefficients from the
DEM simulations are developed. For the diffusion coefficient, this consists in proposing a
new formulation of the drag coefficient, based on the small particle concentration, to found
the accurate values of the diffusion coefficient. For the advection coefficient, it consists in
rewriting the empirical segregation function Fl, in order to find the same dependency with
depth as the advection coefficient from the DEM simulations.

C.1. New formulation of the drag coefficient c
In this part, the idea is to propose a new drag coefficient c that satisfies

φs
√

p̃mI
Φ6cμ

= D0I0.85. (C1)

Since it was found that√
p̃mI
μ

= D′
0 ez̃/s3 with D′

0 = 8.46 × 10−7 s3 = 0.78, (C2)

and

I0.85 = I′
0 ez̃/s2 with I′

0 = 7.52 × 10−7 s2 = 0.8, (C3)

it can be written that √
p̃mI

μI0.85 = D′
0

I′
0

= C0, (C4)

where C0 = 1.13. In this way, (C1) becomes

c(φs) = φs C0

6ΦD0
= 31φs. (C5)
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C.2. New formulation of the empirical segregation function Fl

The new empirical segregation function has to fill the gap with the advection coefficient
found using DEM. Therefore, Fl is such that

IFl

6c(φs)μ
√

p̃m

∣∣∣∣∂ p̃m

∂ z̃

∣∣∣∣ = Sr0I0.85. (C6)

In (C6), the dimensionless pressure gradient is constant and, using the hydrostatic
approximation with cos θ ∼ 1, reads

∂ p̃m/∂ z̃ = −Φ
(
ρp − ρ f

)
/ρp. (C7)

Introducing it in (C6) and remembering that
√

p̃mI/μI0.85 = C0, the empirical segregation
function must satisfy

Fl(p̃m, φs) = 6Sr0ρ
p

C0Φ(ρp − ρ f )
c(φs)p̃m. (C8)
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