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A B S T R A C T

Multi-layer silicone composites are commonly used to mold deformable silicone vocal folds replicas. Neverthe-
less, so far the stress–strain characterisation of such composite specimens is limited to their effective Young’s
modulus (up to 40 kPa) characterising the elastic low-strain range, i.e. up to about 0.3. Therefore, in this
work, the characterisation is extended to account for the non-linear strain range. Stress–strain curves on 6
single-layer and 34 multi-layer silicone specimens, with different layer stacking (serial, parallel, combined or
arbitrary), are measured at room temperature using uni-axial tensile tests for strains up to 1.36, which amounts
to about 4.5 times the extent of the linear low-strain range. Cubic polynomial and exponential two-parameter
relationships are shown to provide accurate continuous fits (coefficient of determination 𝑅2 ≥ 99%) of the
measured stress–strain data. It is then shown that the parameters can be a priori modelled as a constant or
as a linear function of the effective low-strain Young’s modulus for strains up to 1.55, i.e. 5 times the low-
strain range. These a priori modelled parameter are confirmed by approximations of the best fit parameters
for all assessed specimens as a function of the low-strain Young’s modulus. Thus, the continuous stress–strain
behaviour up to 1.55 can be predicted analytically from the effective low-strain Young’s modulus either using
the modelled parameters (𝑅2 ≥ 85%) or the approximations of the best fit parameter sets (𝑅2 ≥ 94%). Accurate
stress–strain predictions are particularly useful for the design of composites with different composition and
stacking. In addition, analytical expressions of the linear high-strain Young’s modulus and the linear high-strain
onset, again as a function of the effective low-strain Young’s modulus, are formulated as well.
1. Introduction

Human voice production is due to the auto-oscillation of the vocal
folds following the fluid–structure interaction (FSI) between the airflow
coming from the lungs and the surrounding vocal folds tissue. Since
2008 (Riede et al., 2008; Drechsel and Thomson, 2008), physical
studies of this fluid–structure interaction (FSI) often rely on deformable
molded multi-layer (ML) composite silicone vocal fold (VF) replicas.
Their usage is mainly motivated by the possibility to mimick – up to
some degree – the (micro-)anatomical ML representation of the human
VF structure, which consists of overlapping muscle (Mu), vocal liga-
ment (Li), superficial (Su) and cover epithelium (Ep) layers (Rosen and
Simpson, 2008). Elastomer silicone mixtures (either Thinner-Ecoflex
(TE) or Thinner-Dragonskin (TD)) at different mass mixing ratios  =
𝑟𝑇 ∶ 𝑟𝐸(𝐷) (with constant 𝑟𝐸(𝐷) = 2) allow to vary the low-strain elastic
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Young’s modulus  of individual layers in order to match the range
reported for human VF layers, i.e. 8–29 kPa for Mu, 10–45 kPa for Li,
2–9 kPa for Su and 40–60 kPa for Ep (Hirano et al., 1983; Alipour and
Titze, 1991; Min et al., 1995; Chan et al., 2007; Chhetri et al., 2011;
Smith and Thomson, 2012; Miri, 2014; Zhang et al., 2017). Commonly
used silicone mixtures (𝐼𝑛, 𝑛 = 1…6) are summarised in Table 1.
Mixtures 𝐼1 up to 𝐼5 (with 2 ≤  ≤ 65 kPa) are used to mold the two-
layer M5 replica (Mu and Su with 𝐼3 and 𝐼2 (Pickup and Thomson,
2010)), the three-layer MRI replica (Mu, Su and Ep with 𝐼2, 𝐼1 and
𝐼5 (Pickup and Thomson, 2010; Bouvet et al., 2020a,b)) and the four-
layer EPI replica (Mu, Li, Su and Ep with 𝐼4, 𝐼2, 𝐼1 and 𝐼5 (Murray and
Thomson, 2012; Bouvet et al., 2020a,b)). An additional mixture 𝐼6 with
greater low-strain Young’s modulus so that 4 ≤ 𝐼6∕𝐼1…5

≤ 150, is con-
sidered to represent a local stiffening within the VF as reported for some
structural VF abnormalities or disorders (Hansen and Thibeault, 2006;
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Fig. 1. (a) Illustration of specimen’s test section dimensions and different layer stacking with respect to the applied force () direction: serial stacking (⟂) between layers 1 and
2, parallel (∥) between 3 and 4, combined (∥⟂) between 3, 4, and 2 and arbitrary (Arb) between 5 and 6, (b) Degree of deformation 𝛥𝑙∕𝑙0 for true strain 0 ≤ 𝜀𝑡 ≤ 1.5. The overall
low-strain range 𝜀𝑡 ≤ 𝜀𝑙 with 𝜀𝑙 ≈ 0.3 is indicated.
Table 1
Molded single layer properties at room temperature: mixture TE or TD
(Mix), mass mixing ratio , low-strain Young’s modulus  in the strain
range 𝜀𝑡 ≤ 𝜀𝑙 .

Label Composition  [kPa] 𝜀𝑙
Mix  [–]

𝐼1 TE 8:2 2 0.24
𝐼2 TE 4:2 4 0.41
𝐼3 TE 2:2 14 0.21
𝐼4 TE 1:2 23 0.25
𝐼5 TD 1:2 65 0.16
𝐼6 TD 0:2 298 0.26

Friedrich et al., 2013; Mattei et al., 2017). Low-strain Young’s moduli 
in Table 1 characterising the linear stress–strain curves 𝜎𝑡(𝜀𝑡) at room
temperature (21 ± 2 ◦ C, mean and standard deviation) are obtained
as the slope of a linear fit (coefficient of determination 𝑅2 ≥ 98%) to
the low-strain range with upper low-strain limit 𝜀𝑙 of measured stress–
strain curves 𝜎𝑡(𝜀𝑡) gathered from uni-axial tensile tests on molded
specimens (Ahmad et al., 2021, 2022).

Despite the anatomical structural relevance of the low-strain elastic
Young’s moduli  of the molded silicone layers, so far ML silicone VF
replicas (e.g. M5, MRI, EPI) are omitted in systematic physical studies
on the influence of the VF structure on the FSI due the lack of an a
priori mechanical characterisation. Recently, in Ahmad et al. (2021,
2022), the low-strain Young’s modulus of ML silicone composites for
which perfectly bounded adjacent layers are stacked either parallel (∥),
serial (⟂), a combination of both (∥⟂) or arbitrary (Arb) with respect
to the force direction as illustrated in Fig. 1(a), is modelled consid-
ering the low-strain effective Young’s modulus 𝑒𝑓𝑓 of an equivalent
homogenised composite. This has been obtained by exploiting firstly
Voigt’s hypothesis (Voigt, 1889) of homogeneous strain for parallel
stacked layers and then Reuss’s hypothesis (Reuss, 1929) of homo-
geneous stress for the remaining serial stacked layers. The model
approach was extensively validated against measured 𝑒𝑓𝑓 values using
uni-axial tensile testing (at room temperature) on molded ML speci-
mens with 5 ≤ 𝑒𝑓𝑓 ≤ 40 kPa. Validation was first done in Ahmad
et al. (2021), using 𝐼1...5, on six two-layer and seven three-layer silicone
molded specimens (5 ≤ 𝑒𝑓𝑓 ≤ 40 kPa) with parallel (∥), serial (⟂)
or combined (∥⟂) stacking and then in Ahmad et al. (2022), using
fourteen specimens obtained as a three-layer composite (𝐼1, 𝐼2 and
𝐼5) embedding a stiff inclusion (𝐼6) with variable size, position and
stacking. That resulted in more complex specimens with at least four
layers which are stacked either parallel (∥), serial (⟂), combined (∥⟂)
2

or arbitrary (Arb). For each molded specimen in Ahmad et al. (2021,
2022), the low-strain effective Young’s modulus 𝑒𝑓𝑓 of the equivalent
homogenised composite was estimated (𝑅2 ≥ 96%) on the measured
stress–strain curves 𝜎𝑡(𝜀𝑡) as the slope characterising the linear low-
strain region 𝜀𝑡 ≤ 𝜀𝑙 with 𝜀𝑙 = 0.30 ± 0.10. It follows that the low-strain
effective Young’s modulus 𝑒𝑓𝑓 , in the strain range up to 𝜀𝑙 ≈ 0.3, of
an equivalent homogenised ML silicone composite can be accurately
modelled (maximum difference of 5.2 kPa (Ahmad et al., 2021, 2022))
from its layers  and stacking geometry.

The degree of deformation of a specimen of length 𝑙0 and elongation
𝛥𝑙 along the force direction,
𝛥𝑙
𝑙0

= 𝑒𝜀𝑡 − 1 (1)

associated with the low-strain range up to 𝜀𝑙 ≈ 0.3 is limited to
deformations up to about 35% as illustrated in Fig. 1(b). As it is
well established (Fung, 1967, 2010) that biological soft tissues, and
thus human VF tissues (Alipour and Titze, 1991; Min et al., 1995;
Zhang et al., 2006; Alipour and Vigmostad, 2012; Miri, 2014), are
characterised by small stresses in response to relatively large strains
𝜀𝑡, greater than one and thus deformations larger than 100% as shown
in Fig. 1(b), it is needed to assess how the stress–strain relationship
of silicone ML composites behaves beyond the linear range and how
the non-linear behaviour compares to the one typically observed in
biological soft tissues.

Therefore, in this work, the stress–strain relationship of silicone
ML composite specimens is investigated beyond the low-strain elastic
range. In particular, 63 measured stress–strain curves on 40 molded
specimens from uni-axial stretching at room temperature described
in Ahmad et al. (2021, 2022) are further analysed in order to char-
acterise and model the stress–strain curves for 𝜀𝑡 > 𝜀𝑙. It is aimed
to propose a validated phenomenologically-based continuous a priori
analytical model of the elastic stress–strain curves within and be-
yond the elastic low-strain range resulting in analytical models for
which model parameters are expressed as a function of the low-strain
Young’s modulus. Thus, this approach aims to predict the stress–strain
behaviour without data fitting to estimate the model parameters. There-
fore, the approach is based on continuous hyper-elastic stress–strain
models characterised firstly by few (i.e. two) model parameters and
secondly by a reported accuracy to fit soft biological tissues stress–
strain behaviour (Fung, 1967; Demiray, 1972; Tanaka et al., 2011;
Fung, 2010; Alipour and Titze, 1991; Burks et al., 2020). It was verified
that the best fit accuracy found for the used two-parameter models
is similar as the accuracy associated with other hyperelastic models.
The total strain range of interest is limited to 𝜀 ≤ 1.5 due to the
𝑡
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Table 2
Molded ML specimens: stacking (||, ⟂, || ⟂, Arb), number of layers 𝑛,
total number (No.) of specimens and tensile test method (MP or PL),
measured low-strain effective Young’s modulus 𝑒𝑓𝑓 in the range up to
𝜀𝑙 ≈ 0.3 at room temperature 21 ± 2 ◦C.

Stacking 𝑛 No. of ML specimens 𝑒𝑓𝑓 [kPa]

Total MP PL

||

2 3 3 3 7–33
3 1 1 1 20

⟂
2 5 3 5 5–29
3 8 1 8 5 – 38
4 2 0 2 6

∥⟂

3 2 1 2 9–17
4 4 0 4 27–32
5 6 0 6 12–31
7 1 0 1 18

Arb / 2 0 2 11–20

Overview ≥ 2 34 9 34 6–38

proposed model approach as well as due to the data strain-range used
for validation. This corresponds to a degree of deformation 𝛥𝑙∕𝑙0 up to
350% (see Fig. 1(b)), or about 10 times the maximum elongation of
35% associated with the overall low-strain upper limit 𝜀𝑙 = 0.3.

Experimental methods and measured stress–strain data are briefly
outlined in Section 2. In Section 3, continuous two-parameter stress–
strain relationships are introduced and analytical parameter expres-
sions are derived. Fitted and analytical stress–strain characterisation on
measured data are compared in Section 4. The conclusion is formulated
in Section 5.

2. Experimental stress–strain data at room temperature

ML silicone composites are molded using 3D-printed bone-shaped
specimen molds (Stratasys ABS-P430, accuracy 0.33 mm). Molded sil-
icone composites have a rectangular test section of length 80 mm,
width 15 mm, and height 10 mm as indicated in Fig. 1(a). In total,
40 silicone specimens were molded following the procedure detailed
in Ahmad et al. (2021), Bouvet (2019). Six single-layer specimens are
molded with one of the silicone mixtures shown in Table 1, which
indicates measured low-strain Young’s moduli  and low-strain upper
limits 𝜀𝑙. These 6 silicone mixtures are combined in order to mold 34
ML specimens. Molded layer dimensions are measured using a laser
transceiver (Panasonic HL-G112-A-C5, wavelength 655 nm, accuracy
8 μm). Table 2 gives an overview of these ML specimens in terms of
their stacking, number of layers 𝑛, the uni-axial tension test method
(mechanical press MP or/and precision loading PL), and the measured
low-strain effective Young’s modulus 𝑒𝑓𝑓 characterising the low-strain
range up to 𝜀𝑙 ≈ 0.3. Measured force–elongation data  (𝛥𝑙) were
collected from uni-axial tensile testing at room temperature 21 ± 2 ◦

C. Two methods (MP and PL), previously cross-validated (difference
less than 3.5 kPa (Ahmad et al., 2021, 2022)), were used. Briefly,
an electro-mechanical press (MP, 3369 Instron Corp.) or a developed
precision loading setup (PL) were used to exert the forcing. The me-
chanical press (MP) was set for displacement control (INSTRON 3369
series, precision of ±0.2 mm at least) up to maximum elongations of
100 mm and 150 mm following the procedure detailed in Ahmad et al.
(2021). The deformation rate was set to 1 mm/s and 2 mm/s for the
100 mm and 150 mm elongation respectively. Force and elongation
time series (sampling rate of 10 Hz) were measured during loading
and unloading of the specimens. No plastic deformation was observed
following unloading. Additional cross-sectional area measurements are
made for each specimen without loading and for elongations set to 25,
50, 100 and 150 mm. For the developed PL setup (Ahmad et al., 2021),
the force is the controlled parameter and is exerted by adding precision
loads (PL) of mass 𝑚 (Vastar 500G X 0.01G, accuracy 0.01 g) at a
3

Fig. 2. Measured maximum strain max(𝜀𝑡) as a function of low-strain Young’s modulus
(𝑒𝑓𝑓 ). The linear low-strain upper limit 𝜀𝑙 ≈ 0.3 is indicated (dashed line).

single rate for each specimen, while measuring the elongation at every
force increment with an accuracy of 0.05 mm as described in Ahmad
et al. (2021, 2022). Depending on the specimen, total added weight
ranges from 46 to 426 g, corresponding to a total elongation from
23 up to 255 mm. The cross-sectional area is measured whenever the
elongation increment due to added weights yields about 15 ± 5 mm.
For both methods, the cross-sectional area  is measured with an
accuracy of 0.02 mm. A quadratic fit (coefficient of determination
𝑅2 ≥ 99%) is used to have a continuous approximation of the average
area-elongation relationship 𝑞(𝛥𝑙) for each specimen. The incompress-
ibility of the specimens was verified by estimating the area-elongation
relationship as  = 0 𝑙0∕𝑙 (𝑅2 ≥ 84%), with 0 denoting the initial
cross-sectional area of the specimen and 𝑙 = 𝑙0 + 𝛥𝑙 the length of the
specimen. The longitudinal stress 𝜎𝑡 and strain 𝜀𝑡 are then obtained as

𝜎𝑡 =

𝑞 , (2)

𝜀𝑡 = ln(
𝑙0 + 𝛥𝑙

𝑙0
), (3)

using measured elongation 𝛥𝑙, force  , and area 𝑞 and with length
𝑙0 and deformation 𝛥𝑙 as defined in Eq. (1). Here, the true definitions
of stress and strain, which are based on the instantaneous values of
length and cross-section area, are adopted. The measured maximum
strain max(𝜀𝑡) depends on the specimen and is limited to max(𝜀𝑡) ≤
1.36. An overview of max(𝜀𝑡) as a function of (𝑒𝑓𝑓 ) is given in Fig. 2.
Respectively, 52 and 25 of the measured stress–strain data curves
satisfy max(𝜀𝑡) ≥ 0.4 and max(𝜀𝑡) ≥ 0.77, which corresponds to an
extension of the strain range of about 33% and 156% beyond the upper
limit of the low-strain region 𝜀𝑙 ≈ 0.3.

3. Continuous elastic stress–strain relationships and a priori mod-
elled parameter expressions

3.1. Continuous two-parameter relationships

The typical stress–strain data curve plotted in Fig. 3(a) shows that
the elastic linear low-strain range 𝜀𝑡 ≤ 𝜀𝑙, expressed with Hooke’s law
using the low-strain effective Young’s modulus (𝑒𝑓𝑓 ) as

𝜎𝑡(𝜀𝑡) = (𝑒𝑓𝑓 ) 𝜀𝑡, (4)

transitions to a more rapid increase of stress 𝜎𝑡 with strain 𝜀𝑡 indicating
elastic non-linear stress–strain behaviour for 𝜀 > 𝜀𝑙. In accordance with
models proposed for soft biological tissues accounting for the rapid non-
linear increase of stress with strain for 𝜀𝑡 > 𝜀𝑙 (Fung, 1967; Demiray,
1972; Tanaka et al., 2011; Fung, 2010; Alipour and Titze, 1991; Burks
et al., 2020), the exponential and third order polynomial (cubic) non-
linear continuous two-parameter relationships with 1 continuity are
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Fig. 3. Experimental stress–strain data curve 𝜎𝑡(𝜀𝑡) (symbols) and stress–strain models (lines) with fit accuracy 𝑅2 ≥ 99.5% for a five-layer (𝑛 = 5) specimen with combined (∥⟂)
stacking: (a) linear (full line) low-strain (𝜀𝑡 ≤ 𝜀𝑙) fit with slope 𝑒𝑓𝑓 = 36 kPa, (b) continuous non-linear cubic (dotted line) and exponential (dashed line) fits.
assessed in order to represent stress–strain curves 𝜎𝑡(𝜀𝑡) of the ML
composites:

exponential : 𝜎𝑡(𝜀𝑡) = 𝐴 (𝑒𝐵 𝜀𝑡 − 1), (5a)

cubic : 𝜎𝑡(𝜀𝑡) = 𝑎 𝜀3𝑡 + 𝑏 𝜀𝑡, (5b)

with (𝐴,𝐵) and (𝑎, 𝑏) their respective two parameter sets.
Fig. 3 illustrates the linear fit of Eq. (4) (in Fig. 3(a)) to the low-

strain region 𝜀𝑡 ≤ 𝜀𝑙 and the continuous exponential and cubic fits of
Eq. (5) (in Fig. 3(b)) to a typical measured stress–strain data set. For
each measured stress–strain curve, best fit parameter sets (𝐴,𝐵) and
(𝑎, 𝑏̂) are estimated by minimising the root mean square error (rmse),

rmse =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

[

(𝜎𝑡)𝑖 − (𝜎𝑡)𝑖
]2 (6)

between measured 𝜎𝑡 and fitted 𝜎𝑡 stresses with 𝑁 the number of
strain data points within the analysis range and 𝑖 the index of indi-
vidual data points. The goodness of fit, expressed by the coefficient
of determination 𝑅2, yields 𝑅2 > 99.5% for each continuous model
to the measured stress–strain curves, obtained using either MP or
PL uni-axial tensile testing. Therefore, both continuous two-parameter
relationships can be used to provide an accurate estimation of the
measured stress–strain curves. The linear low-strain (Section 3.2) and
non-linear (Section 3.3) behaviour of these relationships in terms of
their parameters is considered next.

3.2. Modelled low-strain behaviour of continuous stress–strain relationships

The first order derivatives of Eqs. (5a) and (5b) with respect to 𝜀𝑡
become

exponential :
𝑑𝜎𝑡
𝑑𝜀𝑡

= 𝐴𝐵 𝑒𝐵 𝜀𝑡 , (7a)

cubic :
𝑑𝜎𝑡
𝑑𝜀𝑡

= 3 𝑎 𝜀2𝑡 + 𝑏. (7b)

The linear low-strain behaviour for 𝜀𝑡 ≤ 𝜀𝑙 of the exponential Eq. (5a)
and cubic Eq. (5b) relationship is then obtained from the first order
Taylor expansion near 𝜀𝑡 ≈ 0 as:

exponential : 𝜎𝑡(𝜀𝑡 ≈ 0) = 𝐴𝐵 𝜀𝑡, (8a)

cubic : 𝜎𝑡(𝜀𝑡 ≈ 0) = 𝑏 𝜀𝑡, (8b)

where it is used that both the exponential and cubic relationships
have no residual stress at zero strain so that 𝜎𝑡(𝜀𝑡 ≈ 0) ≈ 0 kPa.
Consequently, the elastic low-strain (effective) Young’s modulus (𝑒𝑓𝑓 ),
describing the linear stress–strain behaviour in the low-strain range
4

𝜀𝑡 ≤ 𝜀𝑙 (Eq. (4)) can be expressed in terms of the parameters of the
continuous relationships as:

exponential : (𝑒𝑓𝑓 ) = 𝐴𝐵, (9a)

cubic : (𝑒𝑓𝑓 ) = 𝑏. (9b)

3.3. Modelled non-linear behaviour of continuous stress–strain relationships

Using 𝐴 = (𝑒𝑓𝑓 )∕𝐵 (Eq. (9a)) and 𝑏 = (𝑒𝑓𝑓 ) (Eq. (9b)) and assuming
that low-strain linear Young’s modulus (𝑒𝑓𝑓 ) is a known quantity, the
two-parameter relationships of Eq. (5a) and (5b) can be rewritten as
one-parameter relationships

exponential : 𝜎𝑡(𝜀𝑡) =
(𝑒𝑓𝑓 )
𝐵

(𝑒𝐵 𝜀𝑡 − 1), (10a)

cubic : 𝜎𝑡(𝜀𝑡) = 𝑎 𝜀3𝑡 + (𝑒𝑓𝑓 ) 𝜀𝑡, (10b)

with the unknown parameters 𝐵 and 𝑎 (already in Eq. (5)) determining
the non-linear behaviour in the range 𝜀𝑡 > 𝜀𝑙.

From the first order expansion of the relationships in Eq. (5) fol-
lows that the local linear slopes 𝑁𝐿 associated with their linear
approximations near any 𝜀𝑡 are expressed as:

exponential : 𝑁𝐿 = (𝑒𝑓𝑓 ) 𝑒𝐵 𝜀𝑡 , (11a)

cubic : 𝑁𝐿 = 3 𝑎 𝜀2𝑡 + (𝑒𝑓𝑓 ). (11b)

At low-strain (for 𝜀𝑡 ≈ 0), these expressions reduce to 𝑁𝐿(𝜀𝑡 ≈ 0) ≈
(𝑒𝑓𝑓 ) in accordance with the linear low-strain behaviour described in
Section 3.2.

In Section 3.1 is shown that both the exponential (Eq. (10a)) and
cubic (Eq. (10b)) relationship can provide accurate estimations of the
measured stress–strain data sets as the fit accuracy holds 𝑅2 > 99.5%.
Therefore, estimated stresses obtained with both relationships are as-
sumed to match. Equating Eq. (10a) and (10b) for any matching strain
value 𝜀𝑚𝑡 and making use of Eqs. (11a) and (11b) gives the following
relationship between 𝑁𝐿 and the low-strain Young’s modulus (𝑒𝑓𝑓 )

𝑁𝐿 ln
( 𝑁𝐿
(𝑒𝑓𝑓 )

)

+ 2 (𝑒𝑓𝑓 ) ln
( 𝑁𝐿
(𝑒𝑓𝑓 )

)

− 3 𝑁𝐿 + 3 (𝑒𝑓𝑓 ) = 0. (12)

In Fig. 4 is shown that the solution 𝑁𝐿((𝑒𝑓𝑓 )) is accurately approxi-
mated as 𝑁𝐿 = 8.58 (𝑒𝑓𝑓 ) (𝑅2 = 99.9%) for (𝑒𝑓𝑓 ) ∈

[

0.1, 350
]

, which
includes the range of interest indicated in Table 1 and in Table 2.

The two-parameter sets (𝐴,𝐵) and (𝑎, 𝑏) of the non-linear exponen-
tial and cubic relationships at any matching strain value 𝜀𝑚 are then a
𝑡
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Fig. 4. Solutions 𝑁𝐿 from Eq. (12) as a function of (𝑒𝑓𝑓 ) (thick full line) and linear
fit (light dotted line) with 𝑅2 = 99.9%. Both curves superimpose.

priori given in terms of (𝑒𝑓𝑓 ) and 𝑁𝐿 as,

exponential : 𝐵 = 1
𝜀𝑚𝑡

ln
( 𝑁𝐿
(𝑒𝑓𝑓 )

)

, 𝐴 =
𝜀𝑚𝑡 (𝑒𝑓𝑓 )

ln
(

𝑁𝐿
(𝑒𝑓𝑓 )

) , (13a)

cubic : 𝑏 = (𝑒𝑓𝑓 ), 𝑎 =
𝑁𝐿 − (𝑒𝑓𝑓 )

3 (𝜀𝑚𝑡 )2
. (13b)

Using the ratio 𝑁𝐿∕(𝑒𝑓𝑓 ) ≈ 8.58, the two-parameter sets of Eq. (5)
become:

exponential : 𝐵 ≈ 2.15 1
𝜀𝑚𝑡

, 𝐴 ≈ 0.47 (𝑒𝑓𝑓 ) 𝜀𝑚𝑡 , (14a)

cubic : 𝑏 ≈ (𝑒𝑓𝑓 ), 𝑎 ≈ 2.53 (𝑒𝑓𝑓 )
1

(𝜀𝑚𝑡 )2
. (14b)

These a priori modelled (positive) parameter expressions respect the
low-strain behaviour in Eqs. (9a) and (9b) as 𝐴𝐵 ≈ (𝑒𝑓𝑓 ) and 𝑏 ≈
(𝑒𝑓𝑓 ). Beyond the low-strain region, the cubic parameter 𝑎 and the
exponential parameter 𝐴 are proportional to (𝑒𝑓𝑓 ). In addition, the
cubic parameter 𝑎 and exponential parameters (𝐴,𝐵) not only depend
on (𝑒𝑓𝑓 ), but also on the considered strain 𝜀𝑚𝑡 at which the cubic
and exponential model are imposed to match. Note that from a third
order Taylor series expansion of the exponential function given in
Eq. (10a) follows that, under the condition that the quadratic term of
the expansion is negligible compared to the linear or cubic expansion
term, nearly matching of the exponential and cubic functions in Eq. (5)
leads to the condition 𝑎 = 1

6𝐵
2(𝑒𝑓𝑓 ), which is the case considering

expressions 𝑎 and 𝐵 in Eq. (14).
For 𝜀𝑚𝑡 = 1, this gives 𝐵 ≈ 2.15, 𝐴∕(𝑒𝑓𝑓 ) ≈ 0.5 and 𝑎∕(𝑒𝑓𝑓 ) ≈ 2.5.

For 𝜀𝑚𝑡 ≠ 1, the model parameters 𝐵, 𝐴 and 𝑎 will decrease or increase
with respect to their value at 𝜀𝑚𝑡 = 1, depending on 𝜀𝑚𝑡 < 1 or 𝜀𝑚𝑡 > 1,
since 𝐵 ∝ 𝜀−1𝑡 , 𝐴 ∝ 𝜀𝑡 and 𝑎 ∝ 𝜀−2𝑡 . Consequently, the influence of the
value of matching strain 𝜀𝑚𝑡 needs to be considered.

The relative difference (in percentage) between the estimated true
stresses using the exponential (𝜎𝑒𝑡 ) and cubic (𝜎𝑐𝑡 ) relationships with the
modelled parameter values (Eq. (14)) as a function of the normalised
strain 𝜀𝑡∕𝜀𝑚𝑡 for any 𝜀𝑚𝑡 is plotted in Fig. 5(a). The difference is zero
at 𝜀𝑡∕𝜀𝑚𝑡 ∈ {0, 1} as for these strains the stresses match. For 0 ≤
𝜀𝑡∕𝜀𝑚𝑡 ≤ 1, the difference is less than the maximum of 12.6% associated
with 𝜀𝑡∕𝜀𝑚𝑡 = 0.28. For 𝜀𝑡∕𝜀𝑚𝑡 > 1, the difference increases since
𝜎𝑒𝑡 (exponential) increases more rapidly than 𝜎𝑐𝑡 (cubic). Overall, the
stress-difference remains less than 12.6% when fulfilling the condition
𝜀𝑡∕𝜀𝑚𝑡 ≤ 1.55 and increases thereafter. Thus 𝜀𝑚𝑡 should be at least
65% of the maximum assessed strain max(𝜀𝑡) to ensure this accuracy
between both the exponential and cubic curves obtained with modelled
parameters from Eq. (14). For 0.77 ≤ 𝜀𝑚𝑡 ≤ 1.36, which is reasonable
considering the variation of the maximum strain (max(𝜀𝑡) ≤ 1.36) in the
measured stress–strain curves (see Fig. 2), we get using Eq. (14) the
model parameter ranges 1.58 ≤ 𝐵 ≤ 2.79, 0.36 ≤ 𝐴∕ ≤ 0.64, 1.36 ≤
5

(𝑒𝑓𝑓 )
𝑎∕(𝑒𝑓𝑓 ) ≤ 4.27 and 𝑏 = (𝑒𝑓𝑓 ). For convenience, concretely 𝜀𝑚𝑡 = 1 is
considered so that Eq. (14) provides a priori modelled expressions of
the two-parameter sets as a function of (𝑒𝑓𝑓 ) only.

Introducing the elongation parameter 𝜆 = 𝑙∕𝑙0 so that 𝜆 = 𝑒𝜀𝑡 and
𝜆 ≥ 1, the strain energy density function expressing the strain energy
per unit volume of the deformed material is obtained as the work done
by the load

(𝜆) = ∫

𝜆

1

𝜎𝑡(𝜆)

𝜆2
𝑑𝜆. (15)

Inserting the exponential 𝜎𝑒𝑡 and the cubic 𝜎𝑐𝑡 stress relationship with
the modelled parameters expressions of Eq. (14),  normalised by the
linear low-strain modulus (𝑒𝑓𝑓 ) becomes,

exponential :
𝑒(𝜆)
𝑒𝑓𝑓

≈ 0.47

(

𝜆1.15

1.15
+

1
𝜆
− 1.87

)

, (16a)

cubic :
𝑐 (𝜆)
𝑒𝑓𝑓

≈ −
1
𝜆

(

2.53 ln3(𝜆) + 7.59 ln2(𝜆)

+ 16.18 ln(𝜆) + 16.18
)

. (16b)

𝑒 and 𝑐 are plotted in Fig. 5(b) as a function of 𝜀𝑡∕𝜀𝑚𝑡 . As observed,
the curves are similar within the range 0 ≤ 𝜀𝑡∕𝜀𝑚𝑡 ≤ 1.55 because the
normalised difference (𝑒 −𝑐 )∕𝑒 is limited to within 12.6% with a
single maximum at 𝜀𝑡∕𝜀𝑚𝑡 = 0.39.

4. Stress–strain characterisation

4.1. Parameter values: best fit, best fit approximation and a priori modelled

Best fit parameter values obtained by minimising the rmse (Eq. (6))
between the continuous exponential (𝑎 and 𝑏̂) or cubic (𝐴 and 𝐵) fits
for 𝜎𝑡(𝜀𝑡) and the measured stress–strain curves 𝜎𝑡(𝜀𝑡) for the complete
strain range up to max(𝜀𝑡) are plotted in Fig. 6 as a function of the
low-strain Young’s modulus (𝑒𝑓𝑓 ). As detailed in Section 3.3, the best
fit accuracy yields 𝑅2 > 99.5% for all specimens so that both the
exponential and cubic two-parameter relationships provide accurate
estimates of the measured stress–strain data curves.

As the rmse-minimisation is a constraint optimisation, resulting best
fit parameter estimations depend on the extent of the strain range
𝜀𝑡 ≤ max(𝜀𝑡) and thus on max(𝜀𝑡). This is shown in Fig. 6 for best fit
parameter estimations on data sets with max(𝜀𝑡) ≥ 0.40 (light grey dots)
and max(𝜀𝑡) ≥ 0.77 (dark grey dots). Best fit parameter estimations 𝐴,
𝐵 and 𝑎 for data sets with max(𝜀𝑡) ≥ 0.77 can be approximated (dashed
black lines) as :

𝐴 ≈ 0.33 (𝑒𝑓𝑓 ), (fit accuracy 𝑅2 = 84%), (17a)

𝐵 ≈ 2.21, (mean with standard deviation ± 0.52), (17b)

𝑎 ≈ 1.78 (𝑒𝑓𝑓 ), (fit accuracy 𝑅2 = 83%). (17c)

In accordance with a priori modelled parameter expressions, (𝐴,𝐵) in
Eq. (14a) and 𝑎 in Eq. (14b), approximations of best fit parameters 𝐴
and 𝑎 depend linearly on the low-strain Young’s modulus (𝑒𝑓𝑓 ) whereas
𝐵 is approximately constant. For comparison, modelled parameter
ranges for 0.77 ≤ 𝜀𝑚𝑡 ≤ 1.36 (1.58 ≤ 𝐵 ≤ 2.79, 0.36 ≤ 𝐴∕(𝑒𝑓𝑓 ) ≤ 0.64,
1.36 ≤ 𝑎∕(𝑒𝑓𝑓 ) ≤ 4.27) are indicated (shaded regions). Thus, best fit
parameters and their approximations are of the order of magnitude of
the modelled parameters.

Following the modelled expressions in Eq. (9), the linear low-strain
stress behaviour is determined by the cubic parameter 𝑏 (Eq. (9a)) or
the exponential parameter product 𝐴𝐵 (Eq. (9b)). Therefore, the best fit
parameter 𝑏̂ (light grey dots), the product 𝐴𝐵 (dark grey dots) as well
as the low-strain Young’s modulus (𝑒𝑓𝑓 ) (full line, identity function)
are plotted as a function of  for all data sets in Fig. 6(d). It is seen
(𝑒𝑓𝑓 )
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Fig. 5. For the exponential (superscript 𝑒) and cubic (superscript 𝑐) relationship: (a) relative difference (%) between modelled true stresses 𝜎𝑡 as a function of normalised strain
𝜀𝑡∕𝜀𝑚𝑡 , (b) strain energy density function  normalised by low-strain 𝑌(𝑒𝑓𝑓 ).
Fig. 6. Exponential (𝐴,𝐵) and cubic (𝑎, 𝑏̂) best fit (𝑅2 > 99.5%) parameters to measured stress–strain curves in the range 𝜀𝑡 ≤ max(𝜀𝑡) as a function of (𝑒𝑓𝑓 ): (a) 𝐴 for
max(𝜀𝑡) ≥ {0.40, 0.77}, (b) 𝐵 for max(𝜀𝑡) ≥ {0.40, 0.77}, (c) 𝑎 for max(𝜀𝑡) ≥ {0.40, 0.77} and (d) 𝑏̂, 𝐴𝐵 and (𝑒𝑓𝑓 ). In (a,b,c) shaded regions indicate modelled parameter ranges for
0.77 ≤ 𝜀𝑚𝑡 ≤ 1.36, dashed lines show fitted parameter approximations for max(𝜀𝑡) ≥ 0.77. In (d) the identity function (full line) and linear fits (dashed and dotted line) are plotted.
that 𝑏̂ and 𝐴𝐵 can be approximated as

𝑏̂ ≈ 0.92 (𝑒𝑓𝑓 ), (fit accuracy 𝑅2 = 95%), (18a)

𝐴𝐵 ≈ 0.79 (𝑒𝑓𝑓 ), (fit accuracy 𝑅2 = 94%). (18b)

As the slopes 0.92 and 0.79 are smaller than one, 𝑏̂ and 𝐴𝐵 underesti-
mate the measured low-strain Young’s modulus (𝑒𝑓𝑓 ) with 8% and 21%
respectively. Note that for the exponential best fit parameters 𝐴 and 𝐵 a
trade-off can be observed from Figs. 6(a) and 6(b) since e.g. for (𝑒𝑓𝑓 ) ≈
32 kPa large values of 𝐴 are compensated by low values of 𝐵 and vice-
versa. This trade-off partly explains the slightly reduced performance of
the exponential best fit compared to the cubic one within the low-strain
region in order to predict (𝑒𝑓𝑓 ). The mean and standard deviation
between the measured (𝑒𝑓𝑓 ) and best fit parameter estimations (𝑏̂ and
̂ ̂
6

𝐴𝐵) mounts to 3.7±2.8 kPa (exponential) and 1.9±1.8 kPa (cubic). The
accuracies of the measurement (3.5 kPa, see Section 2) or the model
(5.2 kPa, see Section 1) of the low-strain Young’s modulus (𝑒𝑓𝑓 ) are
of the same order of magnitude so that, in particular, the cubic best fit
parameter 𝑏̂ provides an accurate estimation of (𝑒𝑓𝑓 ).

Thus, the parameter values of the cubic and exponential relation-
ships can be estimated in three different ways. Besides the best fit
parameters sets (exponential (𝐴,𝐵) or cubic (𝑎, 𝑏̂)), best fit parameter
approximations as a function of (𝑒𝑓𝑓 ) are obtained combining Eqs. (17)
and (18a) whereas a priori modelled parameter values are obtained as a
function of (𝑒𝑓𝑓 ) from Eq. (14) with for convenience 𝜀𝑚𝑡 = 1 as outlined
in Section 3.3 (Fig. 5).

As the best fit parameter approximations and the a priori modelled
parameters both depend solely on the low-strain Young’s modulus
(𝑒𝑓𝑓 ), the fit accuracy might vary when either measured 𝑒𝑓𝑓 or mod-

̂
elled 𝑒𝑓𝑓 (as outlined in Ahmad et al. (2021, 2022)) effective Young’s
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Table 3
Mean and standard deviation of the accuracy (𝑅2 in %) of cubic and exponential two-parameter relationships to stress–strain
data using either best fit parameters (dark dots in Fig. 6), best fit approximated parameters (Eqs. (17) and (18a)), or a priori
modelled parameters at 𝜀𝑚𝑡 = 1 (Eq. (14)) for data sets with max(𝜀𝑡) ≥ {𝜀𝑙 , 0.40, 0.77}.

Best fit Approximations Modelled with 𝜀𝑚𝑡 = 1

Cubic Exponential Cubic Exponential Cubic Exponential

max(𝜀𝑡) ≥ 𝜀𝑙 99.9 ± 0.1 99.9 ± 0.1
98 ± 2a 98 ± 2a 92 ± 10a 87 ± 12a

95 ± 5b 94 ± 5b 91 ± 13b 87 ± 19b

max(𝜀𝑡) ≥ 0.40 99.8 ± 0.2 99.8 ± 0.1
98 ± 2a 98 ± 2a 90 ± 11a 86 ± 13a

95 ± 5b 94 ± 5b 91 ± 16b 89 ± 16b

max(𝜀𝑡) ≥ 0.77 99.8 ± 0.2 99.8 ± 0.1
97 ± 3a 98 ± 3a 88 ± 12a 85 ± 14a

95 ± 4b 95 ± 4b 89 ± 16b 87 ± 18b

aUsing measured low-strain 𝑒𝑓𝑓 .
bUsing modelled low-strain ̂𝑒𝑓𝑓 (Ahmad et al., 2021, 2022).
Fig. 7. Examples of measured stress–strain data (symbols) and 𝑒𝑓𝑓 (in kPa), resulting cubic (C-⋅) and exponential (E-⋅) fits with the best fit approximation parameter sets (⋅-A)
and the modelled parameter sets (⋅-M) for three-layered silicone composites with: (a) serial (⟂) stacking and (b) combined (∥⟂) stacking. The fit accuracy (𝑅2 , rmse) with 𝑅2 (in
%) and root mean square error rmse (in kPa) is indicated for each fit. In (a) curves E–A and C–A overlap measured data. In (b) E–A and C–A as well as C–M and measured data
overlap.
modulus values for ML silicone composites are used. Examples of cubic
(C-⋅) and exponential (E-⋅) fits for three-layered specimens with the best
fit parameter approximation sets (⋅-A) and the modelled parameter sets
(⋅-M) are plotted in Fig. 7. An overview of the exponential and cubic
fit accuracies for the different parameter sets for all stress–strain data
curves is given in Table 3 where the mean and standard deviation of 𝑅2

are reported. Overall, both the cubic and exponential fits exhibit similar
tendencies. The overall mean fit performance is at least 𝑅2 ≥ 85%
illustrating that all parameter sets can be used to obtain a continuous
fit of the measured stress–strain curves. For modelled ̂𝑒𝑓𝑓 , best fit
parameter approximations and modelled parameters result in mean 𝑅2

values of respectively more than 94% and 85%. Consequently, these
parameter estimations in combination with the model of the low-strain
effective Young’s modulus outlined in Ahmad et al. (2021, 2022) can be
used to obtain an a priori, and hence measurement free, characterisation
of stress–strain curves up to 𝜀𝑡 ≤ 1.5 for ML silicone composites.

4.2. Accounting for a linear high-strain elastic region

Fit accuracies reported in Table 3 for the continuous exponential
and cubic relationships, inspired on stress–strain models proposed for
soft biological tissues (Fung, 1967; Demiray, 1972; Tanaka et al., 2011;
Fung, 2010; Alipour and Titze, 1991; Burks et al., 2020), suggest that
ML silicone composites behave, at least partly, in a similar manner.
For soft tissues, the continuous stress–strain behaviour is generally de-
scribed as consisting of an exponential strain range, which includes the
linear low-strain elastic range, followed by a linear elastic high-strain
range. Eq. (12), for which the solution is plotted in Fig. 4, suggests
that the high-strain elastic Young’s modulus 𝑁𝐿 can be expressed
as a linear function of the low-strain elastic Young’s modulus 
7

(𝑒𝑓𝑓 )
with slope 8.58. Since this relationship 𝑁𝐿 = 8.58 (𝑒𝑓𝑓 ) underlies
the modelled parameters for which the mean fit accuracy amounts
to 𝑅2 ≥ 85%, the high-strain elastic region 𝜀𝑡 ≥ 𝜀𝑁𝐿

𝑡 is explicitly
accounted for by considering high-strain onset 𝜀𝑁𝐿

𝑡 and high-strain
Young’s modulus 𝑁𝐿. In the range 𝜀𝑡 ≤ 𝜀𝑁𝐿

𝑡 , the stress is as before
described using the continuous two-parameter exponential and cubic
relationships defined in Eq. (5). Best fit parameter estimations are
again obtained by minimising the rmse given in Eq. (6). Overall, it is
found that the best fit accuracy is slightly improved, at the cost of two
additional parameters, from 𝑅2 ≥ 99.5% to 𝑅2 ≥ 99.6 % for the cubic
and to 𝑅2 ≥ 99.7% for the exponential relationship, respectively. An
example of best fits with (EO) and without (E) high-strain linear elastic
range is plotted in Fig. 8.

When accounting explicitly for a linear high-strain stress behaviour,
expressions in Eqs. (17) and (18) become

𝐴 ≈ 0.40 (𝑒𝑓𝑓 ), (fit accuracy 𝑅2 = 87%), (19a)

𝐵 ≈ 2.07, (mean with standard deviation ± 0.67), (19b)

𝑎 ≈ 1.60 (𝑒𝑓𝑓 ), (fit accuracy 𝑅2 = 74%) (19c)

and

𝑏̂ ≈ 0.92 (𝑒𝑓𝑓 ), (fit accuracy 𝑅2 = 98%), (20a)

𝐴𝐵 ≈ 0.81 (𝑒𝑓𝑓 ), (fit accuracy 𝑅2 = 98%). (20b)

Thus, cubic and exponential best fit parameters can again be approxi-
mated as a constant or linear function of the low-strain elastic Young’s
modulus (𝑒𝑓𝑓 ). Comparing expressions of 𝑏̂ and 𝐴𝐵 in Eq. (18) with
those in Eq. (20) shows that the best fit approximations, describing
the linear low-strain behaviour (𝜀 ≤ 𝜀 ), remain similar since the
𝑡 𝑙
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Fig. 8. Examples of measured stress–strain data (symbols) and low-strain linear slope 𝑒𝑓𝑓 (in kPa) and resulting exponential best fits without (E) and with (EO) linear high strain
range with slope ̂𝑁𝐿 and onset 𝜀𝑁𝐿

𝑡 for three-layered silicone composites with: (a) serial (⟂) stacking, 𝑒𝑓𝑓 = 21.8 kPa, ̂𝑁𝐿 = 145.6 kPa and 𝜀𝑁𝐿
𝑡 = 0.98, (b) combined (∥⟂) stacking,

𝑒𝑓𝑓 = 7.4 kPa, ̂𝑁𝐿 = 60.1 kPa and 𝜀𝑁𝐿
𝑡 = 0.92. The fit accuracy (𝑅2 , rmse) with 𝑅2 (in %) and root mean square error rmse (in kPa) is indicated for each fit.
Table 4
Mean and standard deviation of the accuracy (𝑅2 in %) of non-linear cubic and exponential two-parameter and linear two-
parameter high-strain relationships to stress–strain data using either best fit parameters, best fit approximated parameters or
a priori modelled parameters at 𝜀𝑚𝑡 = 𝜀𝑁𝐿

𝑡 and 𝜀𝑁𝐿
𝑡 = 0.85 max(𝜀𝑡) for data sets with max(𝜀𝑡) ≥ {𝜀𝑙 , 0.40, 0.77, 0.90}.

Best fit Approximations Modelled with 𝜀𝑚𝑡 = 𝜀𝑁𝐿
𝑡

Cubic Exponential Cubic Exponential Cubic Exponential

max(𝜀𝑡) ≥ 𝜀𝑙 99.9 ± 0.1 99.9 ± 0.1
98 ± 2a 98 ± 2a 28 ± 37a 27 ± 36a

89 ± 13b 87 ± 17b 31 ± 36b 32 ± 36b

max(𝜀𝑡) ≥ 0.40 99.9 ± 0.1 99.9 ± 0.1
98 ± 2a 98 ± 2a 32 ± 38a 31 ± 37a

92 ± 7b 91 ± 10b 39 ± 36b 37 ± 36b

max(𝜀𝑡) ≥ 0.77 99.9 ± 0.1 99.9 ± 0.1
98 ± 2a 98 ± 2a 52 ± 39a 54 ± 39a

94 ± 4b 94 ± 7b 64 ± 31b 62 ± 32b

max(𝜀𝑡) ≥ 0.90 99.9 ± 0.1 99.9 ± 0.1
98 ± 2a 98 ± 2a 71 ± 33a 69 ± 33a

94 ± 5b 94 ± 7b 61 ± 37b 60 ± 37b

aUsing measured 𝑒𝑓𝑓 , 𝑁𝐿 and 𝜀𝑁𝐿
𝑡 .

busing modelled ̂𝑒𝑓𝑓 (Ahmad et al., 2021, 2022), 𝑁𝐿 and 𝜀𝑁𝐿
𝑡 .
slopes vary with less than 2.5%. The change to best fit parameter
approximations 𝑎, 𝐴 and 𝐵, determining the non-linear stress–strain
behaviour for 𝜀𝑡 ≤ 𝜀𝑁𝐿

𝑡 , remains limited as well since the slopes in
Eq. (19), which respectively differ with 11%, 18% and 10% from those
in Eq. (17).

Parameters ̂𝑁𝐿 and 𝜀𝑁𝐿
𝑡 determining the linear high-strain be-

haviour are plotted in Fig. 9. From Fig. 9(b) it is seen that the ra-
tio between the estimated high-strain and low-strain Young’s moduli
̂𝑁𝐿∕(𝑒𝑓𝑓 ) is mostly smaller than 5 for 𝜀𝑁𝐿

𝑡 < 0.77 and smaller than
7 for 𝜀𝑁𝐿

𝑡 < 0.90, whereas the ratio is greater than 7 for 𝜀𝑁𝐿
𝑡 ≥ 0.90.

This implies, as plotted for 𝜀𝑁𝐿
𝑡 ≥ {0.40, 0.77, 0.90} in Fig. 9(a), that

the slopes characterising the linear fits (𝑅2 = 87%, 𝑅2 = 88% and
𝑅2 = 91%) of ̂𝑁𝐿((𝑒𝑓𝑓 )) increase with 𝜀𝑁𝐿

𝑡 . For 𝜀𝑁𝐿
𝑡 ≥ 0.9, the

resulting slope of 8.55 (̂𝑁𝐿 = 8.55 (𝑒𝑓𝑓 )) is within 1% of the slope
of 8.58 (left border of the shaded region in Fig. 9(a)) found as the
solution of Eq. (12) (see Fig. 4). This suggests that although augmenting
the number of parameters increases the best fit accuracy, high-strain
linear behaviour is only retrieved for 𝜀𝑁𝐿

𝑡 ≥ 0.9 in which case the
high-strain Young’s modulus is about 8.55 times the low-strain Young’s
modulus. From Fig. 9(c) it is seen that the onset of the high-strain
region is approximated as a linear fit (𝑅2 = 96%) of max(𝜀𝑡), namely
𝜀𝑁𝐿
𝑡 ≈ 0.82 max(𝜀𝑡), with max(𝜀𝑡) ≤ 1.36 for the assessed data sets.

An overview of the overall fit accuracies with different parameter
sets for the non-linear exponential and cubic relationships in the range
𝜀𝑡 < 𝜀𝑁𝐿

𝑡 and a high-strain linear range for 𝜀𝑡 ≥ 𝜀𝑁𝐿
𝑡 is given in

Table 4 where the mean and standard deviation of 𝑅2 are reported.
Comparing these values with those in Table 3 shows that fit accuracies
are similar are either similar or deteriorate. Consequently, accounting
for a linear high-strain range does not significantly improve the fit
8

accuracy. Note that without explicitly accounting for a high-strain
linear range ̂𝑁𝐿 can still be estimated as ̂𝑚𝑎𝑥 denoting the slope of
the stress–strain curves near max(𝜀𝑡) since a linear high-strain region
implies a constant slope for 𝜀𝑡 ≥ 𝜀𝑁𝐿

𝑡 . This is illustrated in Fig. 10 where
the relative difference 𝛥̂𝑁𝐿 (in percentage) between ̂𝑚𝑎𝑥 and 𝑁𝐿 is
plotted for max(𝜀𝑡) ≥ {0.4, 0.77, 0.9}. It is seen that the mean (7.2%,
3.4% and 0.8%) and standard deviation (12.3%, 8.3% and 7.9%) of
𝛥̂𝑁𝐿 decreases for increasing max(𝜀𝑡). This supports the observation
that a linear high-strain range does only occur for 𝜀𝑁𝐿

𝑡 ≥ 0.9 and thus
requires max(𝜀𝑡) > 0.9.

5. Conclusion

In agreement with polynomial and exponential stress–strain rela-
tionships for soft biological tissues, best fits (in terms of root mean
square error) of two-parameter cubic and exponential relationships are
shown to provide an accurate (𝑅2 > 99.5%) and continuous description
of measured low-strain (up to ≈0.3) and subsequent non-linear stress–
strain behaviour of ML silicone composite specimens. These composites
are characterised by their layer stacking (serial, parallel, combined or
arbitrary), measured effective low-strain Young’s modulus (𝑒𝑓𝑓 ) up to
40 kPa, and some contain a stiff ( = 298 kPa) inclusion as observed in
certain structural vocal fold pathologies.

The best fit parameters, minimising the root mean square error
between the fitted and measured data (mean fit accuracy 𝑅2 ≥ 99.8%),
can be approximated as a constant or linear function of (𝑒𝑓𝑓 ) with a
very limited accuracy loss regardless of the assessed maximum strain as
the mean fit accuracy yields 𝑅2 ≥ 97% and 𝑅2 ≥ 94% when respectively
the measured or modelled  is considered. Besides, the best fit
(𝑒𝑓𝑓 )
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Fig. 9. Linear high-strain elastic parameters (̂𝑁𝐿 , 𝜀𝑁𝐿
𝑡 ) for 𝜀𝑁𝐿

𝑡 ≥ {0.40, 0.77, 0.90}: (a) estimated high-strain Young’s modulus ̂𝑁𝐿 as a function of low-strain Young’s modulus
(𝑒𝑓𝑓 ) with shaded region [1, 8.58] (𝑒𝑓𝑓 ), linear fits (𝑅2 = 87%, 𝑅2 = 88% and 𝑅2 = 91%) are indicated (lines), (b) normalised high-strain lower limit 𝜀𝑁𝐿

𝑡 ∕max(𝜀𝑡) as a function
of the ratio between high-strain and low-strain Young’s moduli ̂𝑁𝐿∕(𝑒𝑓𝑓 ), mean values (horizontal lines) are indicated (standard deviation of 10%, 7% and 4%), (c) 𝜀𝑁𝐿

𝑡 as a
function of max(𝜀𝑡), linear fit (dashed line) (𝑅2 = 96%) and identity function (full line).
Fig. 10. Relative difference 𝛥̂𝑁𝐿 between the linear stress–strain slope ̂𝑚𝑎𝑥 estimated
near max(𝜀𝑡) and 𝑁𝐿 near 𝜀𝑁𝐿

𝑡 for max(𝜀𝑡) ≥ {0.4, 0.77, 0.9}. The shaded region indicates
the mean (0.8%, dotted line) plus and minus the standard deviation for max(𝜀𝑡) ≥ 0.9.

parameters and their approximations, a priori modelled parameter sets
are derived as well. These modelled parameters depend on (𝑒𝑓𝑓 ) in the
same way as the approximated best fit parameters. Contrary to the best
fit parameter sets and subsequent approximated best fit parameters, no
data are used to derive the modelled parameter sets so that the found
accuracy (mean fit accuracy 𝑅2 ≥ 85% with measured or modelled
 ) supports the model approach which uses the assumption that
9

(𝑒𝑓𝑓 )
the cubic and exponential relationship match at a strain-value corre-
sponding to at least 64% of the maximum strain. This ensures that both
relationships as well as their strain energy density functions agree to
within 12.6% for the full strain range. Thus for a matching strain value
of 1.0, the cubic and exponential relationships, and hence the modelled
two-parameter sets, can be applied for strains up to 1.55, which is about
4.5 times the low-strain limit. In addition, a modelled expression for
the high-strain elastic Young’s modulus 𝑁𝐿, characterising a linear
high-strain stress behaviour, is obtained as 8.58 (𝑒𝑓𝑓 ). Consequently,
both approximated best fit parameters and a priori modelled parameters
can be used to characterise the linear and non-linear stress–strain
relationship once (𝑒𝑓𝑓 ) is known, where (𝑒𝑓𝑓 ) is either measured
or modelled. Therefore, combining the previously proposed low-strain
Young’s modulus model (Ahmad et al., 2021, 2022) with the cubic or
exponential stress–strain characterisation and approximated or mod-
elled two-parameter sets as a function of (𝑒𝑓𝑓 ) results in an a priori
stress–strain characterisation. This is of particular benefit for the design
of ML silicone composites and thus in term for the design of vocal fold
replicas which so far relied on a tedious and a posteriori experimental
characterisation. It is of interest to further investigate stress–strain
curves with strains up to 1.55 or more in order to further confirm the
linear high-strain behaviour. In addition, the proposed modelled non-
linear two-parameter relationships, with a priori modelled parameter,
can be compared with other hyperelastic multi-parameter constitutive
laws requiring a more extensive data based fitting.
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