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Grup de recerca en Tecnologies Mèdia, La Salle, Universitat Ramon Llull C/Quatre Camins 2,
E-08022 Barcelona, Catalonia, Spain

Rafael Laboissière
PACS Team, INSERM Unit 1028: Cognition and Brain Dynamics, Lyon Neurosciences Research Centre,
EPU-ISTIL, Claude Bernard University, Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France

Xavier Pelorson
GIPSA-Lab, Unit�e Mixte de Recherche au Centre National de la Recherche Scientifique 5216,
Grenoble Campus, St Martin dHeres, F-38402, France

Oriol Guasch
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In this paper, a multimodal theory accounting for higher order acoustical propagation modes is

presented as an extension to the classical plane wave theory. This theoretical development is vali-

dated against experiments on vocal tract replicas, obtained using a 3D printer and finite element

simulations. Simplified vocal tract geometries of increasing complexity are used to investigate the

influence of some geometrical parameters on the acoustical properties of the vocal tract. It is shown

that the higher order modes can produce additional resonances and anti-resonances and can also

strongly affect the radiated sound. These effects appear to be dependent on the eccentricity and the

cross-sectional shape of the geometries. Finally, the comparison between the simulations and the

experiments points out the importance of taking visco-thermal losses into account to increase

the accuracy of the resonance bandwidths prediction. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4906166]

[ZZ] Pages: 832–843

I. INTRODUCTION

In voice production, as well as in voice analysis, such as

inverse filtering, for instance, plane wave propagation is

assumed inside the vocal tract. In other words, it is assumed

that the acoustic pressure only depends on the propagation

direction and that a one-dimensional description of the vocal

tract shape, using an area function, is sufficient to predict the

acoustic field both inside and outside of the vocal tract.

Classical textbooks (e.g., Fant, 1971; Flanagan, 1972;

Stevens, 2000; O’Shaughnessy, 1987) often indicate that

these descriptions rely on a low frequency assumption, so

the limits of validity of the underlying theory are not clearly

established.

As our knowledge concerning the sound sources

increases (e.g., Kniesburges, 2013; Zheng et al., 2011;

Jackson and Shadle, 2000; Thomson et al., 2005), the ability

to extract the three dimensional vocal tract geometry also

increases (e.g., Story, 2008; Narayanan et al., 1995; Woo

et al., 2012). In vivo measurements, or computer simulations,

often enhance spectacular departures from plane wave

theory even at moderate frequencies (on the order of 5 kHz,

Dang and Honda, 1997; El-Masri et al., 1998; Arnela and

Guasch, 2013; Takemoto et al., 2010; Vampola et al., 2013).

As a plausible explanation for these departures, we first

present a theoretical investigation of sound propagation

inside a simplified vocal-tract-like waveguide focusing, in

particular, upon the three dimensional effects due to the

presence of higher order acoustical modes. The goal of this

paper is not only to apply a theoretical model to account for

them but also to compare the predictions with experiments

and specific observations relating the vocal-tract-like

geometries.

The validation of the implementation of the proposed

theoretical model will be performed against finite element

numerical simulations and the acoustic measurements per-

formed on mechanical replicas of the vocal tract.
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We will consider geometries with increasing degrees of

complexity. Simple academic approximations, such as two-

tube concatenations, will also be useful to enhance some

three dimensional geometrical effects.

The paper is structured as follows. The multimodal

theory is detailed in Sec. II. The geometries used for this

study, the experimental setup, the transfer function measure-

ment method, and the finite element simulation method are

presented in Sec. III. In Sec. IV, the measurement and simu-

lation results are compared and the difference between the

geometries are discussed.

II. MULTIMODAL THEORY

In this section, the multimodal theory used to compute

the acoustic pressure and velocity in a variable cross-section

waveguide is detailed. This theory has been developed by

several authors including Roure (1976), Kergomard et al.
(1989), Pagneux et al. (1996), and Kemp (2002). It has al-

ready been applied to the vocal tract case with rectangular

cross-sections by Motoki et al. (2000). The aforementioned

works are extended to consider straight vocal tract geome-

tries with arbitrary cross-sections and eccentric junctions.

The strategy is to divide the waveguide in a succession of

constant cross-section waveguides in which the Helmholtz

equation can easily be solved. By applying the continuity

equations of the pressure and the velocity at each junction

and taking into account the radiation impedance at the open

end of the waveguide, one can back-propagate the imped-

ance or admittance matrices from the open end to the en-

trance. The acoustic pressure and velocity can then be

propagated from the entrance toward the exit and computed

in each section.

In what follows the assumptions of linear acoustics

(small perturbations assumption) are considered.

A. Constant cross-section waveguides

The pressure p and the velocity vx3
in the propagation

direction x3 inside a waveguide with arbitrary constant

cross-section shape can be expressed as the summation of

the contribution of an infinity of propagation modes wn

(Morse and Ingard, 1986) weighted by a propagation factor

ðAne�jknx36Bnejknx3Þ and a time evolution factor ejxt,

p ¼
X1
n¼0

wn x1; x2ð Þ Ane�jknx3 þ Bnejknx3

� �
ejxt;

vx3
¼ 1

xq

X1
n¼0

knwn x1; x2ð Þ Ane�jknx3 � Bnejknx3

� �
ejxt ;

8>>>><
>>>>:

(1)

where ðx1; x2; x3Þ is a generalized coordinate system, x3 is

the propagation direction, x is the angular frequency, and q
is the constant air density. The functions wn are the solutions

of the two dimensional Helmholtz equation for the cross-

section shape. They are part of an orthogonal modal basis

and they satisfy a normalization condition

ð
S

w�mwndS ¼ Sdmn; (2)

where S is the cross-section surface.

For rectangular cross-sections wn are a combination of

sine and cosine functions, for circular cross-sections they are

a combination of Bessel, sine and cosine functions and for el-

liptical cross-sections they are a combination of Mathieu

(Abramowitz and Stegun, 1972), sine and cosine functions. In

the general case there is no analytical expression for wn. It is,

however, possible to get an approximation for them using nu-

merical methods such as finite differences or finite elements.

To each mode wn of this basis corresponds a modal

wavenumber kn in the propagation direction x3 which satis-

fies the dispersion relationship

k2 ¼ k2
x1
þ k2

x2
þ k2

n; (3)

where k ¼ w=c is the free field wavenumber and c is the

sound speed at rest.

To avoid heavy expressions it is more convenient to use

a vector notation (throughout this article vectors and matrix

are in bold) and to omit the ejxt factor:

p ¼ wtP ;

vx3
¼ 1

S
wtU ;

8<
: (4)

where superscript t is the transpose operator, w ¼ ½w1ðx1;

x2Þ;w2ðx1; x2Þ;…;wnðx1; x2Þ�t, P ¼ ½A1e�jk1x3 þ B1ejk1x3 ;

A2e�jk2x3 þ B2ejk2x3 ;…;Ane�jknx3 þ Bnejknx3 �t, and U

¼ ½k1S=xqðA1e�jk1x3 � B1ejk1x3Þ; k2S=xqðA2e�jk2x3

�B2ejk2x3Þ; …; knS=xqðAne�jknx3 � Bnejknx3Þ�t.
Solving the wave equation with the expressions of Eq.

(4) for the pressure and the velocity allows writing two rela-

tionships between the pressure and velocity modal ampli-

tudes P and U at two different locations. Consider two points

located within the waveguide at the abscissas x
ð0Þ
3 and x

ð1Þ
3 .

Pð0Þ and Uð0Þ at x
ð0Þ
3 can be known from Pð1Þ and Uð1Þ at x

ð1Þ
3

with

Pð0Þ ¼ D1Pð1Þ þ D2ZcUð1Þ; (5)

Uð0Þ ¼ D2Z�1
c Pð1Þ þ D1Uð1Þ; (6)

where D1¼ diag(cos ðkndÞ) is a diagonal matrix whose terms

are cosðkndÞ with d ¼ x
ð1Þ
3 � x

ð0Þ
3 , D2¼ diag(j sinðkndÞ), and

Zc is the characteristic impedance matrix obtained as

Zc¼ diagðkqc=knSÞ.
Using PðiÞ ¼ ZðiÞUðiÞ, with i ¼ 0 or i ¼ 1, allows writing

a relationship between the impedance matrices Zð0Þ and Zð1Þ

at x
ð0Þ
3 and x

ð1Þ
3 ,

Zð0Þ ¼ ½D1Zð1Þ þ D2Zc� ½D2Z�1
c Zð1Þ þ D1��1: (7)

Following the same procedure and using the equation UðiÞ

¼ YðiÞPðiÞ allows us to write three other relationships between

the impedance and the admittance matrices at x
ð0Þ
3 and x

ð1Þ
3 ,
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Zð0Þ ¼ ½D1 þ D2ZcYð1Þ� ½D2Z�1
c þ D1Yð1Þ��1; (8)

Yð0Þ ¼ ½D1Yð1Þ þ D2Z�1
c � ½D2ZcYð1Þ þ D1��1 ; (9)

Yð0Þ ¼ ½D1 þ D2Z�1
c Zð1Þ� ½D2Zc þ D1Zð1Þ��1 : (10)

B. Junctions between sections

At a junction between two ducts with different cross-

sections it is necessary to find a relationship between the

modal basis of each section. Let us consider two ducts a and

b whose cross-sectional surfaces are Sa and Sb, respectively

(see Fig. 1). Applying the continuity of both the pressure and

the velocity on each side of the junction yields

wt
aPa ¼ wt

bPb; (11)

1

Sa
wt

aUa ¼
1

Sb
wt

bUb: (12)

Hereafter the subscript b always refers to the duct with

the largest cross-section and the subscript a to the smallest

one. If one assumes that Sa < Sb and Sa lies inside Sb, multi-

plying both sides of Eq. (11) with w�a=Sa and integrating

over Sa leads to

Pa ¼
1

Sa

ð
Sa

w�aw
t
bdSa

� �
Pb: (13)

In the same way multiplying Eq. (12) with w�b and inte-

grating over Sb yields

Ub ¼
1

Sa

ð
Sb

w�bw
t
adSb

� �
Ua: (14)

Yet we have wa ¼ 0 on Sb � Sa, so

ð
Sb

w�bw
t
adSb ¼

ð
Sa

w�bw
t
adSa ¼

ð
Sa

w�aw
t
bdSa

� �†

;

where the dagger represents the transpose conjugate. Thus

defining F as

F ¼ 1

Sa

ð
Sa

w�aw
t
bdS: (15)

Equations (13) and (14) can be rewritten as

Pa ¼ FPb; (16)

Ub ¼ F†Ua: (17)

Given that P ¼ ZU and U ¼ YP, Eqs. (16) and (17) can be

expressed as

Za ¼ F ZbF† ; (18)

Yb ¼ F†YaF : (19)

C. Computation of the acoustic pressure and velocity
fields

The radiation impedance matrix at the open end (last

cross-section) can be obtained analytically in the case of a

circular or a rectangular waveguide flanged into an infinite

baffle using Zorumski (1973) and Kemp et al. (2001) expres-

sions, while for an arbitrary shaped cross-section this can be

achieved by numerically integrating the expression

Zmn ¼
jxq
2pS2

ð
S

dS

ð
S

wm x01; x
0
2ð Þwn x1; x2ð Þ

e�jkh

h
dS; (20)

with h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x01Þ2 þ ðx2 � x02Þ2

q
and S being the cross-

section surface at the open end of the waveguide. This im-

pedance matrix can be back-propagated towards the entrance

of the waveguide. To do so, Eqs. (18) and (19) allow one to

propagate the impedance and admittance matrices through a

junction. However, these matrices can be poorly conditioned

and inversion must be avoided. Thus the impedance matrix

must be used for expansions and the admittance matrix for

contractions. This constraint introduces four different cases

for the projection of the impedance or admittance matrices

from a junction to another which are described in Fig. 2.

For case (a), both junctions are expanding so the imped-

ance matrices can be propagated through the junctions with

Eq. (18) and Zð0Þ can be computed from Zð1Þ with Eq. (7).

On the contrary, in case (c) both junctions are contracting so

the admittance matrices can be propagated through the junc-

tions with Eq. (19) and Yð0Þ can be computed from Yð1Þ with

Eq. (9). Case (b) is expanding and then contracting, so the

admittance matrix can be propagated through the junction of

FIG. 1. Junction between two ducts of arbitrary cross-section shape.
FIG. 2. The four different configurations for backward projection of imped-

ance and admittance matrices.
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the right and the impedance matrix can be propagated

through the junction of the left. The impedance Zð0Þ can be

computed from the admittance Yð1Þ with Eq. (8). The oppo-

site case (d) is contracting and then expanding, so the imped-

ance matrix can be propagated through the junction of the

right and the admittance matrix can be propagated through

the junction of the left. The admittance Yð0Þ can be computed

from the impedance Zð1Þ with Eq. (10).

However D1 and D2 in Eqs. (7)–(10) contain very large

terms for evanescent modes which induce round off numeri-

cal errors. To ensure numerical stability, a new diagonal ma-

trix D3¼ diag(tan ðkndÞ) is introduced. Equations (7)–(10)

are rewritten using only D�1
3 and D�1

2 instead of D1 and D2,

Zð0Þ ¼ ðjD3Þ�1
Zc � D�1

2 Zc½Zð1Þ þ ðjD3Þ�1Zc�D�1
2 Zc;

(21)

Zð0Þ ¼ ðjD3Þ�1
Zc � D�1

2 Zc½Iþ ðjD3Þ�1Yð1ÞZc�D�1
2 Zc;

(22)

Yð0Þ ¼ ðjD3Þ�1
Z�1

c � D�1
2 Z�1

c ½Yð1Þ þ ðjD3Þ�1�D�1
2 Z�1

c ;

(23)

Yð0Þ ¼ ðjD3Þ�1
Z�1

c � D�1
2 Z�1

c

� ½Iþ ðjD3Þ�1Z�1
c Zð1Þ�D�1

2 Z�1
c : (24)

In the case of a source located at the entrance, the pres-

sure or the acoustic velocity of the source can be projected

on the modal basis which describes the pressure and velocity

field at the source location. For a source delivering a velocity

vs on a surface Ss, the modal amplitude Us corresponding to

the source can be found with

Us ¼
ð

Ss

w � vsdSs: (25)

The pressure and the velocity modal amplitudes can be then

propagated from the entrance to the open end. Introducing

Yð1Þ and Zð1Þ into Eqs. (5) and (6) leads to

Pð1Þ ¼ ½D1 þ D2ZcYð1Þ��1
Pð0Þ ; (26)

Uð1Þ ¼ ½D2Z�1
c Zð1Þ þ D1��1

Uð0Þ ; (27)

which allow one to propagate P or U (depending on whether

the impedance or the admittance is known) through a constant

cross-section waveguide portion. The vectors P and U can

then be propagated through the junctions using Eqs. (16) and

(17). Equations (5) and (6) allow to compute P and U at any

abscissa x3 and the pressure p and the axial velocity vx3
can

be computed with Eq. (1) at any point inside the waveguide.

The pressure field radiated by the waveguide can be

computed using the Rayleigh–Sommerfield integral

p x1; x2; x3ð Þ ¼
X1
n¼0

jxq
2pS

ð
S0

Unwn x01; x
0
2ð Þ e

jkh

h
dS0; (28)

with h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x01Þ2 þ ðx2 � x02Þ2 þ ðx3 � x03Þ2

q
, S0 being

the surface at the open end of the waveguide and

ðx01; x02; x03Þ the coordinates of the points on S0.

This multimodal theory has been implemented with

OCTAVE to perform simulations. Finite differences have been

used to compute the wn functions. This simulation method

will be called the multimodal method (MM) hereafter.

III. METHODS

A. Vocal tract geometries

Five different vocal tract geometries are considered in

this work (see Fig. 3).

First, in order to study the effect of the eccentricity of a

junction between two waveguide sections, two geometries

have been considered.

(1) One with two cylindrical tubes sharing the same central

axis [Fig. 3(a), called the “centric case” hereafter].

(2) One with two cylindrical tubes sharing a common line on

the edge [Fig. 3(b), called the “eccentric case” hereafter].

The two tubes of both geometries are 85 mm long and

have an internal diameter of 14.5 mm and 29.5 mm.

Although these geometries are a very rough two tube

approximation of the vocal tract, they can be seen as a

vowel =a= reproduction (Fant, 1971). Two replicas of these

geometries have been built with Plexiglas tubes to perform

measurements.

Three more realistic vocal tract geometries of vowel =a=
have then been considered using a vocal tract area function

provided by Story (2008). Each of these three simplified

vocal tracts is designed to investigate a geometrical detail

effect.

(1) One has circular cross-sections sharing the same central

axis [Fig. 3(c), called “centric =a=” hereafter].

(2) One has circular cross-sections sharing a common line

on the edge [Fig. 3(d), called “eccentric =a=” hereafter].

(3) One has elliptical cross-sections sharing a common line

on the edge [Fig. 3(e), called “elliptic =a=” hereafter].

In the case of the eccentric and the elliptical =a= cases,

the length of each section has been adjusted so that the total

length of the line that connects the centers of each cross-

section (called the midline hereafter) is the same as for cen-

tric =a=. Otherwise, numerical tests have shown that a non-

expected shift down of the formant positions can be pro-

duced (up to about 2%). Thus the length of each section is

3.88, 3.82, and 3.86 mm for the centric, eccentric, and ellip-

tic =a=, respectively. On the other hand, the eccentricity of

the mouth aperture, obtained from Fromkin (1964) for vowel

=a=, has been applied to all cross-sections to generate the el-

liptical vocal tract, as done in Arnela et al. (2013).

FIG. 3. Vocal tract geometries used for the experiments and simulations.
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Three replicas of these geometries have been built using

a 3D printer (ProJet 3510 SD).

B. Experimental setup

An experimental setup inspired from the work of

Motoki et al. (1992) has been developed to measure the

acoustic pressure inside and outside of the vocal tract repli-

cas. A scheme of this setup is presented in Fig. 4. In order to

be able to generate sound over the frequency range relevant

in speech (100 to 10 000 Hz), two different acoustic sources

have been needed. Because a loudspeaker would not provide

enough acoustic energy, compression chambers have

become necessary. Two chambers have been used: a

Monacor KU-916T and an Eminence PSD:2002S-8 for the

frequency ranges 100–2000 Hz and 2000–10 000 Hz, respec-

tively. The source is connected to the replica with an adapta-

tion part which features a 2 mm diameter centered

communication hole from which the sound radiates inside

the vocal tract replica. The acoustic pressure is then meas-

ured with a B&K 4182 probe microphone equipped with a

1 mm diameter and a 200 mm long probe. A 3D positioning

system (OWIS PS35) allows one to move the probe micro-

phone in all directions with an accuracy of 61.10�4 m.

However, this accuracy can be reduced by the initial posi-

tioning which is less accurate (61 mm) and can induce a sys-

tematic error. The microphone signal is next transmitted by

means of a microphone conditioner (B&K 5935 L) to a data

acquisition card (NI PCI-MIO 16 XE) at a sampling fre-

quency of 44 150 Hz. This card is also used to generate the

excitation signal which is transmitted to an amplifier (Onkyo

a-807) and then to the compression chamber. The whole pro-

cess is controlled by the LABVIEW program.

The open end of the replica, the microphone, and the

positioning system were set inside an insulated room (1.92

� 1.95� 1.99 m, Vol¼ 7.45 m3, Van Hirtum and Fujiso,

2012). Acoustic foam was placed on the table on which the

positioner was located to minimize reflections. The acoustic

source was placed outside of the insulated room to avoid in-

terference between the compression chamber and the sound

radiated by the replica. A rigid rectangular plane screen

made of Plexiglas was set on the exit of the replica to get

large dimensions (365� 360 mm) compared to the wave-

length of interest.

C. Transfer function measurement method

An experimental method has been designed to estimate

the transfer function between two points a and b located

inside or outside of a waveguide (see Fig. 5).

A sinusoidal signal was generated during 1 s for each fre-

quency. This type of signal allows us to provide enough

energy to the replica even when anti-resonance is measured.

The acoustic pressure was measured by the probe-microphone

at the point a and b. The amplifier output electric signal was

recorded synchronously. The amplitude and the phase of the

recorded signals were extracted using a Fourier transform of

each 1 s recording. This allows one to isolate the frequency

component of interest and thus to limit disturbances due to

harmonic distortion and noise.

The transfer functions H0a and H0b (see Fig. 5) between

the output of the amplifier and the points a and b are first

computed. They can be expressed as

H0a ¼
Aa

A0

ej/0a ;

H0b ¼
Ab

A0

ej/0b ;

8>><
>>:

(29)

where Aa, Ab, A0, /0a, and /0b are the pressure amplitudes at

points a and b, the amplifier output signal amplitude, and the

phase differences between the pressures at points a and b
and the amplifier output signal.

The transfer function Hab between a and b can then be

deduced from H0a and H0b computing the ratio

Hab ¼
H0b

H0a
: (30)

No calibration of the microphone is necessary since the sen-

sitivity factor is eliminated in Eq. (30).

H0a and H0b can be considered as the product of the

transfer functions of the amplifier, the source, the acoustic

propagation through the replica to the microphone, the

FIG. 4. Experimental setup. FIG. 5. Transfer function measurement method.
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microphone, and the microphone conditioner. These transfer

functions are eliminated in Eq. (30) and their influence is

thus limited. However, this relies on the assumption that the

whole measurement system is linear. This is not the case for

the acoustic source, but the effects of the non-linearities are

limited by the analysis method which isolates the frequency

component of interest, and by the fact that the amplitude of

the generated signal is maintained constant during the whole

process.

Since they correspond to the ratio of the pressure at two

different points and not to the ratio between the pressure at

the exit and at the input, the peaks of these transfer functions

cannot be considered as formants. However, because of their

low sensitivity to experimental artifacts, they are well suited

for the comparison with the simulations.

D. Pressure maps

To illustrate the importance of higher order modes and

to compare simulations with experiments, the pressure field

within the vocal tract and in the near-field was computed

and measured at a given frequency for each configuration

(see Sec. III A). To do this, the vocal tract was excited at

the glottis cross-sectional area with a sinusoidal signal. Its

frequency was chosen to coincide with a vocal tract reso-

nance or anti-resonance, which can be obtained from the

spectrum of the acoustic pressure at the vocal tract exit. It

is thus different from the pressure-pressure transfer func-

tion frequencies presented in Tables I and II. Since small

differences can be produced between experiments and sim-

ulations, these values were extracted for each method to

ensure similar pressure distributions. The acoustic pressure

was then tracked in a structured grid of points with a dis-

tance of 2.5 mm apart (see Fig. 6 for the eccentric =a=). The

acoustic pressure amplitude was finally computed to obtain

a pressure map.

E. Finite element simulations

The finite element method (FEM) was used to solve the

time domain wave equation for the acoustic pressure. First,

each one of the vocal tract models presented in Sec. III A

were set in a rigid baffle with dimensions 0.3 m� 0.3 m.

This baffle constitutes one side of a rectangular volume of

0.3 m� 0.3 m� 0.2 m in size which allowed sound waves to

radiate out from the vocal tract. Free-field radiation condi-

tions were then emulated by means of a perfectly matched

layer (PML) of width 0.1 m that surrounded this radiation

space and absorbed the outgoing sound waves. The PML

was configured to get a reflection coefficient of r1 ¼ 10�4

at its outer boundary. The resulting computational domains

were then meshed using tetrahedral elements with a size that

ranged from 0.002 m within the vocal tract and immediate

TABLE I. Resonance frequencies and bandwidths for the pressure-pressure

transfer functions in Fig. 6 obtained for two vowel =a= vocal tract replicas

made of two cylindrical tubes with centric and eccentric junctions.

Resonance frequencies (Hz)

Plane mode Higher order modes

R1 R2 R3 R4 R5 R6 R7 R8 R9

Centric Exp 970 2490 3160 4620 5840 8930 — — —

MM 970 2520 3190 4630 5910 9030 — — —

FEM 980 2530 3210 4640 5920 9040 — — —

Eccentric Exp 970 2480 3110 4630 5640 8990 7530 8230 9720

MM 970 2500 3150 4630 5730 9070 7540 8280 9790

FEM 980 2510 3160 4650 5740 9040 7480 8240 9720

Resonance bandwidths (Hz)

Centric Exp 40 157 159 542 228 422 — — —

MM 31 142 114 482 177 304 — — —

FEM 34 173 153 547 230 386 — — —

Eccentric Exp 45 149 156 a 159 316 a 195 a

MM 32 132 122 505 117 290 65 169 a

FEM 37 166 160 612 158 353 107 211 a

aNot measurable.

TABLE II. Resonance and anti-resonance frequencies and bandwidths of

examples of transfer functions (presented in Fig. 10) between two points
inside of three vowel =a= vocal tract replicas with centric junctions and cir-
cular cross-sections, eccentric junctions and circular cross-sections and
eccentric junctions and elliptical cross-sections.

Resonance and anti-resonance frequencies (Hz)

Plane mode Higher order modes Anti-resonances

R1 R2 R3 R4 A1 A2

Centric Exp 3430 5180 — — — —

MM 3500 5230 — — — —

FEM 3450 5210 — — — —

Eccentric Exp 3360 4970 6600 8320 5790 9530

MM 3440 5010 6620 8460 5850 9610

FEM 3410 5020 650 8340 5810 9510

Elliptic Exp 3340 5120 6730 8550 6300 9790

MM 3480 5140 6770 8610 6320 9890

FEM 3440 5140 6730 8510 6290 9790

Resonance and anti-resonance bandwidths (Hz)

Centric Exp 227 552 — — — —

MM 208 512 — — — —

FEM 213 507 — — — —

Eccentric Exp 210 478 31 14 30 65

MM 190 435 14 49 211 102

FEM 183 446 27 55 72 86

Elliptic Exp 154 433 54 113 15 72

MM 184 433 4 17 258 6

FEM 205 454 41 48 64 8

FIG. 6. (Color online) Grid of points for the eccentric =a=, where the acous-

tic pressure is extracted to compute a pressure map.
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outer space, to 0.005 m in the radiation space and 0.0075 m

in the PML region.

As far as boundary conditions are concerned, a Gaussian

pulse of the type (Arnela and Guasch, 2013)

GPðnÞ ¼ e½ðDt n�TGPÞ0:29TGP�2 ½m3=s�; (31)

with TGP ¼ 0:646=f0 and f0 ¼ 10 kHz, was imposed at the

vocal tract entrance to compute transfer functions, while a si-

nusoidal signal, i.e., sinð2p ftÞ, with f corresponding to the

frequency of interest was used for obtaining pressure maps

(see Sec. III D). To avoid numerical errors beyond the maxi-

mum frequency of interest (fmax ¼ 10 kHz), the Gaussian

pulse was filtered using a low-pass filter with cutoff fre-

quency 10 kHz. At the vocal tract walls, a constant frequency

boundary admittance coefficient of l ¼ 0:0025 was imposed

to introduce losses. This value was deemed appropriate after

a tuning process, where the resonance bandwidths obtained

from simulations were adjusted to fit those from experi-

ments. The baffle where the vocal tracts were set was consid-

ered rigid, i.e., l ¼ 0 on its surface.

A finite element simulation lasting 25 ms for each case

was then performed with a sampling rate of fs ¼ 1=Dt
¼ 2000 kHz. Such a high frequency rate is needed to fulfill

within the meshed computational domains, a stability condi-

tion of the Courant–Friedrich–Levy type. A value of c0

¼ 344 m/s was chosen for the speed of sound, which corre-

sponds to the average temperature value of 21 �C reported

during experiments. Details on the finite element formulation

and on the derivation of the boundary conditions can be

found in Arnela and Guasch (2013) and Arnela et al. (2013),

respectively.

IV. RESULTS AND DISCUSSION

A. Two cylindrical tubes approximation

The two-tubes geometries are very simple academic

cases in which the effect of higher order modes can be high-

lighted. Indeed, theoretically (Morse and Ingard, 1986) one

can predict that the non-planar mode which has the lowest

cut-on frequency (6720 Hz at 21 �C) features a nodal line

wn ¼ 0 located in the middle of the cross-section. wn is posi-

tive on one side of this nodal line and negative on the other.

In the case of a centric junction both sides of the nodal line

are excited by the plane waves coming from the smallest

tube. Their contributions to excite this mode compensate

each other and is thus zero. In contrast, in the case of an

eccentric junction only one side of the nodal line is excited

and this mode is expected to be particularly strong inside the

larger tube.

1. Transfer functions

Figure 7 presents examples of transfer functions meas-

ured and simulated between two points on the longitudinal

axis x3 (see Fig. 1 for x3 definition). One point is located

inside the replica at 30 mm from the source and the other

one is outside at 10 mm from the open end. The resonance

frequencies and their �3 dB bandwidths are listed in

Table I.

As expected, in the high frequency range (above 5 kHz)

resonances and anti-resonances which are absent in the cen-

tric case appear for the eccentric one. In experiments, these

anti-resonances are located at 7030 and 7380 Hz while addi-

tional resonances are found at 7530, 8230, and 9720 Hz (see

Table I). The resonance frequencies of the eccentric case

slightly differ from the centric configuration (up to 3.4%

lower for R5 of the experimental data) and their bandwidths

are smaller (up to 30.2% smaller for R5 of the experimental

data). The MM and FEM simulations follow the same trend.

Some small differences can also be observed below

5 kHz. The resonances mainly occur at a lower frequency in

the eccentric case compared to the centric configuration (up

to 1.6% lower for R3 of the experimental data), except for

R1 and R4 which have similar values. This shift down in the

resonance frequencies could be explained by the fact that the

replica behaves as if it is extended by the eccentricity of the

junction. Indeed the midline is longer for the eccentric case.

Both MM and FEM resonance frequencies are close to

the experiments, within less than 2%. In general, the band-

widths of the simulations are smaller than those obtained

experimentally. This can be understood as an effect of visco-

thermal losses. Indeed, accounting for visco-thermal losses

would reduce the resonance frequencies and increase their

bandwidths (Morse and Ingard, 1986). The MM neglects all

visco-thermal losses while FEM account partially for them

(see Sec. III E) and are thus closer to the experimental

values.

2. Pressure maps

In Fig. 8 it is shown as an example the pressure maps

for the centric (top) and eccentric configuration (bottom)

when the seventh formant is excited, for both experiments

FIG. 7. (Color online) Examples of pressure-pressure transfer functions

between two points inside two vowel =a= vocal tract replicas made of two

cylindrical tubes with (top) centric and (bottom) eccentric junctions. The

Exp and FEM data have, respectively, been increased and decreased by

10 dB and �10 dB with respect to the MM for visualization purposes. (Exp:

experimental data, MM: multimodal method, FEM: finite element method.)
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and simulations. Some cuts of these pressure maps are also

shown in Fig. 9 to compare more easily the measurements

and the results obtained with each method.

In agreement with the results observed in the transfer

functions, no propagation of the higher order modes can be

appreciated on the pressure field in the centric case (see top of

Fig. 8). However, the experimental data exhibits some non-

planar waveforms [see Fig. 8(a)], in contrast to simulations

[see Figs. 8(b) and 8(c)]. Although the greatest care was taken

when building the replica, it appears that it is not perfectly

symmetrical. As a consequence the first higher order mode is

slightly excited and propagates. However, the longitudinal

pressure profile along x3 is located on the nodal line of the

first non-planar mode and allows one to observe the effect of

the plane mode alone. The measured profile appears to be

similar to the one obtained in simulations [see Fig. 9(a)].

Second, the transverse profile along x2 presented in Fig. 9(b)

shows that this effect has a limited impact on the radiated

pressure. On the other hand, the iso-amplitude lines are circu-

lar outside of the replica [see top of Figs. 8 and 9(b)], showing

that the acoustic pressure radiates in spherical waves.

As far as the eccentric case is concerned, the first higher

order mode effects can be observed in both experiments and

simulations (see bottom of Figs. 8 and 9). While the plane

mode is still predominant in the narrowest tube, the first

higher order mode becomes predominant in the widest cross-

section of the replica. The influence of this mode on the radi-

ated field can be observed as well. The radiated sound pat-

tern is no longer spherical [see bottom of Figs. 8 and 9(d)].

Finally, the different curves shown in Fig. 9 have been

quantitatively compared. The mean difference between the

experiment and the simulations is less than 1 dB for the cen-

tric case and less than 2 dB for the eccentric case.

In summary: The two-tubes replicas point out the evi-

dence for higher order modes in simplified two tubes vocal

FIG. 8. (Color online) Examples of pressure amplitude maps inside and outside of two vowel =a= vocal tract replicas made of two cylindrical tubes with a cen-

tric (top) and an eccentric (bottom) junction for high frequencies.

FIG. 9. (Color online) Cuts of the pressure maps in Fig. 8 along the central

axis x3 (left column) and a perpendicular x2 axis located just in front of the

open end (right column) measured and simulated on two vowel =a= vocal

tract replicas made of two cylindrical tubes. A 10 dB shift has been applied

between the maxima of the three curves for visualization purposes.
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geometries. The importance of the connection of the junc-

tions appears to be critical. When present, these higher order

modes strongly affect both the internal and the radiated

sound field.

B. 44 tubes approximations

In order to study the effect of higher order modes on

more realistic geometries, the three vowel =a= vocal tract

replicas presented in Sec. III A have been used. In this case

the analysis has been limited to the mid-high frequency

range (2–10 kHz), of more interest for the purposes of this

work.

1. Transfer functions

Transfer functions between two points inside the repli-

cas located at 80 and 130 mm from the source on x3 are pre-

sented in Fig. 10. The resonances and anti-resonances

frequencies and �3 dB bandwidths of these transfer func-

tions have been listed in Table II.

As expected from Sec. IV A, one can observe resonan-

ces (R3 and R4) and anti-resonances (A1 and A2) for the

geometries which feature eccentric junctions which are not

observed for the centric configuration.

In the mid-frequency range (2–5.5 kHz) the resonances

occur at lower frequencies for the geometries with eccentric

junctions. Indeed, for the experimental data they are up to

4% lower (for R2) for the eccentric and the elliptic =a=.

Another effect of the eccentricity at the mid-frequencies is

the reduction of the resonance bandwidths. This effect is

more important for the elliptic =a=. Thus it appears that the

effect of junction eccentricity and cross-section shape on the

resonances bandwidths is not negligible even at mid-

frequencies.

The transfer function obtained for the elliptic =a= is sim-

ilar to the one obtained for the eccentric =a= up to the high

frequencies where the resonance and anti-resonance frequen-

cies are increased for the elliptic =a= (see middle and bottom

of Fig. 10). Indeed, for the elliptic =a= the frequency of R4

and A1 are, respectively, 230 and 510 Hz higher (or 2.8%

and 8.8% higher). These resonance and anti-resonance shifts

are in fact produced by the change of cross-sectional shape.

From a theoretical point of view, this can be attributed to the

propagation modes wn in Eq. (1), which are different for cir-

cular and elliptical cross-sections. The cut-on frequency of

the propagation mode involved in the appearance of the

additional resonances and anti-resonances is increased for

the elliptic =a=.

Both MM and FEM simulations are in good agreement

with the experiments. The maximal difference between

resonances and anti-resonances frequencies is less than 5%.

The bandwidths of the simulations are smaller than in the

experiments. The difference is more pronounced for the

MM. As for the two-tubes replicas this can be attributed to

the visco-thermal losses which are partially taken into

account by the FEM (see Sec. III E) but neglected by the

MM. On the other hand, in the experimental data of Fig. 10

one can notice an additional resonance after R4 for the

eccentric and elliptic =a= which does not appear in the simu-

lations. The presence of this resonance may be due to experi-

mental issues such as positioning error or small

imperfections in the replica.

2. Pressure maps

In Fig. 11, examples of pressure maps are presented for

the centric =a= (top), eccentric =a= (mid), and elliptic =a=
(bottom) at high frequency values for both experiments and

simulations. Longitudinal and transversal cuts of these maps

along x3 and x2 just in front of the open end are provided in

Fig. 12.

For the centric =a=, one can observe the effect of the

higher order modes inside the replica for the experimental

data [see Fig. 11(a)]. This is not the case for the simulated

data on which the iso-amplitude lines are perpendicular to x3

inside the replicas [see Figs. 11(b) and 11(c)]. As for the

two-tubes this is probably due to small imperfections of the

replica. The pressure profile along the central axis x3 pro-

vided in Fig. 12(a) allows one to observe the effect of the

plane mode alone. It appears to be similar to the simulation

profiles. On the other hand, the transverse pressure profile

along x2 presented in Fig. 12(b) shows that the effect on the

radiated pressure is limited. As a matter of fact, the radiated

pressure is spherical.

As expected, this is not the case for the eccentric and

elliptic =a=. The effect of the higher order modes inside

these replicas can be clearly observed (see middle and

FIG. 10. (Color online) Examples of pressure-pressure transfer functions

between two points inside three simplified vowel =a= vocal tract replicas

with (top) centric junctions and circular cross-sections, (middle) eccentric

junctions and circular cross-sections and (bottom) eccentric junctions and el-

liptical cross-sections.
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bottom of Fig. 11). There are local maxima and minima

which corresponds to cavity modes. The minima obtained

with MM and FEM are more pronounced than those meas-

ured experimentally, and the minima of the MM simulations

are more important than those of the FEM simulation (see

middle and bottom of Figs. 11 and 12). This can be linked

with the observations made on the transfer functions: the

resonances of the simulations have higher amplitudes and

narrower bandwidths. The origin of this difference is prob-

ably also the problem of taking visco-thermal losses into

account.

The pressure radiated by the eccentric and the elliptic

=a= appears as strongly directional though it is less noticea-

ble for the elliptic =a= (see middle and bottom of Fig. 11).

In Fig. 12, both MM and FEM simulations show pres-

sure profiles which are close to the experimental data. There

are, however, some small differences in the amplitude of the

minima and the symmetry of the patterns in the cuts per-

formed along x2 outside of the vocal tracts [see Figs. 12(b),

12(d), and 12(f)]. In Figs. 12(b) and 12(f), the experimental

pressure profile is not perfectly symmetrical, whereas the

simulation pressure profiles are. In Fig. 12(d), the two lobes

of the experimental data have almost the same amplitude,

whereas for both MM and FEM the left lobe has a smaller

amplitude than the right lobe. Small differences in the ampli-

tude of the minima can also be observed on the cuts per-

formed along x3 [see Figs. 12(a), 12(c), and 12(e)]. It is

assumed that the difference comes from an experimental ar-

tifact due either to some imperfections of the replicas or to

reflections on the table which has been insufficiently damped

by the acoustic foam.

To compare the cuts of Fig. 12 more directly, the same

procedure as for the two-tubes replicas has been followed.

The maximal mean difference between the simulations and

the experiments is 2.8 dB for the FEM and 2.2 dB for the

MM.

In summary: The three configurations for the vowel =a=
highlight the importance of taking higher order modes into

FIG. 11. (Color online) Examples of pressure amplitude maps for high frequencies inside and outside of three simplified vowel =a= vocal tract replicas with

(top) centric junctions and circular cross-sections, (middle) eccentric junctions and circular cross-sections and (bottom) eccentric junctions and elliptical cross-

sections.
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account for high frequency simulations of the vocal tract acous-

tics. The effect of higher order modes on transfer functions and

radiation patterns is emphasized by the eccentric and the elliptic

=a= configurations. The measurements and the simulations

have also shown that the higher order modes can affect the mid

frequency behavior of vocal tract like geometries.

V. CONCLUSION

The conclusions that can be drawn from this study are

the following:

(1) Higher acoustical modes can be efficiently predicted

using a modal approach. Typical accuracy for resonance

frequency is 5%. The resonance bandwidths appeared to

be underestimated. This is probably because the visco-

thermal losses are neglected in the MM implementation

and difficult to take into account with time domain FEM

solutions. These losses could be included in the future

following Bruneau et al. (1987) and Bruneau et al.
(1989). It is to be noted that some works have already

dealt with this loss mechanism using FEM in the fre-

quency domain (see, e.g., Lefebvre and Scavone, 2010).

However, the implementation of frequency dependent

boundary conditions to consider visco-thermal losses is

not a straightforward task in time domain FEM. Some

efficient steps towards this goal can be found in Van den

Nieuwenhof and Coyette (2001).

(2) At low and mid frequencies (0–5.5 kHz) the higher order

modes only slightly change the resonance frequencies

and bandwidths. Their effect at high frequency (above 5

kHz) is more spectacular since they generate additional

resonances which cannot be predicted using plane wave

theory and anti-resonances corresponding to a standing

wave perpendicular to the propagation direction.

(3) The higher order modes are highly dependent on the geo-

metrical approximation of the vocal tract. For a given

area the cut-on frequency of higher acoustical modes

depends on the cross section shape.

(4) The connection between the different sections of the

vocal tract approximation is also of great importance. It

has been shown that, because of the asymmetry of the

first non-planar propagation mode, a centered concatena-

tion of tubes will prevent the apparition of this mode.

(5) The FEM allows studying any complex geometry with

any kind of open end but requires a long simulation du-

ration (about 24 h in a serial computing system with

processor Intel
VR

CoreTM i5 2.8 Ghz for the simulations

presented in this paper) and it needs to mesh a part of the

outer space. On the other hand, the MM has shorter sim-

ulation durations (about 1 h on a desktop computer with

processor Intel
VR

CoreTM vProTM 3.0 Ghz for the simula-

tions presented in this paper) and do not require any

other discretization than the vocal tract but is limited to

simple straight geometries at the present time.

(6) In this work the human head geometry has been roughly

approximated by a rigid flat baffle. The effects of more

realistic finite flange assumptions (see, e.g., Arnela

et al., 2013) on higher order mode propagation will be

investigated in the future.

These conclusions indicate that the greatest care should

be taken when processing data obtained from imaging tech-

niques such as MRI into 3D geometrical data. The percep-

tual relevance of these higher acoustical modes can be

questioned in the case of vowels since the sound source, the

glottal pulses, is essentially of low frequency nature.

However, harmonic energy at high frequencies is an essen-

tial feature of normal/bright voice quality. Furthermore, the

occurrence of higher order acoustical modes is predicted to

happen in the range of 4–5 kHz, which corresponds to the

maximum of sensitivity of the human ear.

Concerning the radiated sound field, the presence of

higher order modes is a plausible explanation for directivity

effects at high frequency (Monson et al., 2012) which cannot

be explained by plane wave theory. The present study will

be extended to the case of fricative sounds for which, due to

the wide-band spectrum of the turbulent source as well as its

location, higher order modes are expected not only to be

essential in terms of propagation and radiation, but also in

terms of aeroacoustic interaction with the sound generation

(Hirschberg et al., 1995).

FIG. 12. (Color online) Cuts of the pressure maps in Fig. 11 along the prop-

agation axis x3 (left column) and the axis x2 just in front of the open end

(right column) measured and simulated on three simplified vowel =a= vocal

tract replicas with (top) centric junctions and circular cross-sections, (mid-

dle) eccentric junctions and circular cross-sections and (bottom) eccentric

junctions and elliptical cross-sections. A 10 dB shift has been applied

between the maxima of the three curves for visualization purposes.

842 J. Acoust. Soc. Am., Vol. 137, No. 2, February 2015 Blandin et al.: Multimodal vocal tract

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  152.77.24.10 On: Mon, 23 Feb 2015 15:39:24



ACKNOWLEDGMENTS

This research was supported by EU-FET Grant No.

EUNISON 308874. M.A. would like to acknowledge the

Generalitat de Catalunya (SUR/ECO) for the predoctoral FI

Grant No. 2014FI B2 00142.

Abramowitz, M., and Stegun, I. (1972). Handbook of Mathematical
Functions (Dover, New York), Vol. 1, Chap. 20.

Arnela, M., and Guasch, O. (2013). “Finite element computation of elliptical

vocal tract impedances using the two-microphone transfer function meth-

od,” J. Acoust. Soc. Am. 133, 4197–4209.

Arnela, M., Guasch, O., and Al�ıas, F. (2013). “Effects of head geometry

simplifications on acoustic radiation of vowel sounds based on time-

domain finite-element simulations,” J. Acoust. Soc. Am. 134, 2946–2954.

Bruneau, A., Bruneau, M., Herzog, P., and Kergomard, J. (1987).

“Boundary layer attenuation of higher order modes in waveguides,”

J. Sound Vib. 119, 15–27.

Bruneau, M., Herzog, P., Kergomard, J., and Polack, J. (1989). “General for-

mulation of the dispersion equation in bounded visco-thermal fluid, and

application to some simple geometries,” Wave Motion 11, 441–451.

Dang, J., and Honda, K. (1997). “Acoustic characteristics of the piriform

fossa in models and humans,” J. Acoust. Soc. Am. 101, 456–465.

El-Masri, S., Pelorson, X., Saguet, P., and Badin, P. (1998). “Development

of the transmission line matrix method in acoustics applications to higher

modes in the vocal tract and other complex ducts,” Int. J. Numer. Model.

El. 11, 133–151.

Fant, G. (1971). Acoustic Theory of Speech Production: With Calculations
Based on X-ray Studies of Russian Articulations (Walter de Gruyter, The

Hague), Vol. 2, Chap. 1.

Flanagan, J. L. (1972). Speech Analysis: Synthesis and Perception
(Springer-Verlag, Berlin), Chap. 3.

Fromkin, V. (1964). “Lip positions in American English vowels,” Lang.

Speech 7, 215–225.

Hirschberg, A., Kergomard, J., and Weinreich, G. (1995). Aero-acoustics of
Wind Instruments, Mechanics of Musical Instruments, Lectures Notes
CISM (Springer-Verlag, Wien), pp. 291–369.

Jackson, P., and Shadle, C. (2000). “Aero-acoustic modelling of voiced and

unvoiced fricatives based on MRI data,” in Proceedings of 5th Speech
Production Seminar, Kloster Seeon, Germany, pp. 185–188.

Kemp, J. (2002). “Theoretical and experimental study of wave propagation

in brass musical instruments,” Ph.D. thesis, University of Edinburgh.

Kemp, J., Campbell, D., and Amir, N. (2001). “Multimodal radiation imped-

ance of a rectangular duct terminated in an infinite baffle,” Acta Acust.

Acust. 87, 11–15.

Kergomard, J., Garcia, A., Tagui, G., and Dalmont, J. (1989). “Analysis of

higher order mode effects in an expansion chamber using modal theory

and equivalent electrical circuits,” J. Sound Vib. 129, 457–475.

Kniesburges, S. (2013). “Influence of vortical flow structures on the glottal

jet location in the supraglottal region,” J. Voice 27, 531–544.

Lefebvre, A., and Scavone, G. (2010). “Finite element modeling of wood-

wind instruments,” in Proceedings of ISMA.

Monson, B., Hunter, E., and Story, B. (2012). “Horizontal directivity of

low- and high-frequency energy in speech and singing,” J. Acoust. Soc.

Am. 132, 433–441.

Morse, P., and Ingard, K. (1986). Theoretical Acoustics (Princeton

University Press, Princeton), Chap. 9.

Motoki, K., Badin, P., Pelorson, X., and Matsuzaki, H. (2000). “A modal

parametric method for computing acoustic characteristics of three-

dimensional vocal tract models,” in Proceedings of the 5th Seminar on
Speech Production: Models and Data, pp. 325–328.

Motoki, K., Miki, N., and Nagai, N. (1992). “Measurement of sound-

pressure distribution in replicas of the oral cavity,” J. Acoust. Soc. Am.

92, 2577–2585.

Narayanan, S., Alwan, A., and Haker, K. (1995). “An articulatory study of

fricative consonants using magnetic resonance imaging,” J. Acoust. Soc.

Am. 98, 1325–1347.

O’Shaughnessy, D. (1987). Speech Communication: Human and Machine,
Addison-Wesley Series in Electrical Engineering: Digital Signal
Processing (Wiley-IEEE Press, Piscataway, NJ), Chap. 3.

Pagneux, V., Amir, N., and Kergomard, J. (1996). “A study of wave propa-

gation in varying cross-section waveguides by modal decomposition. Part

I. Theory and validation,” J. Acoust. Soc. Am. 100, 2034–2048.

Roure, A. (1976). “Propagation guid�ee. etude des discontinuit�es” (“Guided

propagation. Study of discontinuities”), Ph.D. thesis, Universit�e d’Aix-

Marseille, Marseille.

Stevens, K. (2000). Acoustic Phonetics (MIT Press, Cambridge, MA), Vol.

30, Chap. 3.

Story, B. (2008). “Comparison of magnetic resonance imaging-based vocal

tract area functions obtained from the same speaker in 1994 and 2002,”

J. Acoust. Soc. Am. 123, 327–335.

Takemoto, H., Mokhtari, P., and Kitamura, T. (2010). “Acoustic analysis of

the vocal tract during vowel production by finite-difference time-domain

method,” J. Acoust. Soc. Am. 128, 3724–3738.

Thomson, S., Mongeau, L., and Frankel, S. (2005). “Aerodynamic transfer

of energy to the vocal folds,” J. Acoust. Soc. Am. 118, 1689–1700.

Vampola, T., Hor�acek, J., Laukkanen, A.-M., and �Svec, J. G. (2013).

“Human vocal tract resonances and the corresponding mode shapes inves-

tigated by three-dimensional finite-element modelling based on CT meas-

urement,” Logoped. Phoniat. Vocol., doi:10.3109/14015439.2013.775333,

1–10.

Van den Nieuwenhof, B., and Coyette, J. (2001). “Treatment of frequency-

dependent admittance boundary conditions in transient acoustic finite/infi-

nite-element models,” J. Acoust. Soc. Am. 110, 1743–1751.

Van Hirtum, A., and Fujiso, Y. (2012). “Insulation room for aero-acoustic

experiments at moderate Reynolds and low Mach numbers,” Appl.

Acoust. 73, 72–77.

Woo, J., Murano, E., Stone, M., and Prince, J. (2012). “Reconstruction of

high-resolution tongue volumes from MRI,” IEEE Trans. Biomed. Eng.

59, 3511–3524.

Zheng, X., Mittal, R., Xue, Q., and Bielamowicz, S. (2011). “Direct-numeri-

cal simulation of the glottal jet and vocal-fold dynamics in a three-

dimensional laryngeal model,” J. Acoust. Soc. Am. 130, 404–415.

Zorumski, W. (1973). “Generalized radiation impedances and reflection

coefficients of circular and annular ducts,” J. Acoust. Soc. Am. 54,

1667–1673.

J. Acoust. Soc. Am., Vol. 137, No. 2, February 2015 Blandin et al.: Multimodal vocal tract 843

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  152.77.24.10 On: Mon, 23 Feb 2015 15:39:24


	s1
	l
	n1
	s2
	s2A
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	s2B
	d15
	d16
	d17
	d18
	d19
	s2C
	d20
	f1
	f2
	d21
	d22
	d23
	d24
	d25
	d26
	d27
	d28
	s3
	s3A
	f3
	s3B
	s3C
	d29
	d30
	f4
	f5
	s3D
	s3E
	t1
	t1n1
	t2
	f6
	d31
	s4
	s4A
	s4A1
	s4A2
	f7
	f8
	f9
	s4B
	s4B1
	s4B2
	f10
	f11
	s5
	f12
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35

