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Simulations of waveguide acoustics require a description of the boundary condition at the open
end. For problems involving higher order transverse modes, it is often described by a multimodal
radiation impedance matrix. Expressions for the computation of this matrix for an infinite flange
condition are available only for circular and rectangular cross-sectional shapes. Thus, a general
expression valid for arbitrary cross-sectional shapes is of interest. Such an expression is proposed,
validated against known cases, and applied to an arbitrary cross-section shape. The solution is
shown to be computationally efficient. VC 2019 Acoustical Society of America.
https://doi.org/10.1121/1.5099262
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I. INTRODUCTION

At the open end of a waveguide, the acoustic boundary
condition can be described by a multimodal radiation imped-
ance matrix Z which relates the acoustic pressure to the
acoustic flow velocity. Such a description relies on the pro-
jection of the acoustic field on the transverse mode series wm

resulting as a solution of the two-dimensional Helmholtz
equation.

The multimodal radiation impedance matrix of a wave-
guide terminated in an infinite baffle can be obtained in the
case of circular1–3 or rectangular4 cross-sections from dedi-
cated expressions. However, no general expression is avail-
able for an arbitrary cross-section shape.

The purpose of this work is therefore to propose a gen-
eral numerical expression approximating the radiation
impedance matrix for a waveguide with arbitrary cross-
sectional shape terminated in an infinite baffle. The expres-
sion can be computed from the transverse modes obtained
by solving the two-dimensional Helmholtz equation on the
cross-sectional shape. The expression is detailed in Sec. II
and in Sec. III it is validated against known expressions and
applied to an arbitrary cross-sectional shape.

II. NUMERICAL APPROXIMATION OF THE RADIATION
IMPEDANCE MATRIX

The radiation impedance matrix Z of a waveguide ter-
minated in an infinite baffle, in which the acoustic field can
be decomposed over the transverse mode series wn, can be
expressed with an implicit time convention ejxt as the double
surface integral3,4
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with x¼ 2pf the angular frequency, f the frequency, wave-
number k ¼ x=c, q the density of the fluid taken as air, S the

cross-sectional area, and h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
the

Euclidean distance between two different locations, ðx01; x02Þ
and (x1, x2), on the cross-sectional surface in a Cartesian
coordinate system and with h 6¼ 0.

The transverse modes wm are part of an orthogonal basis
and they satisfy the normalization condition

ð

S
w&mwndS ¼ Sdm;n; (2)

with the Kronecker function dm;n. Describing the open end
boundary condition this way avoids simulating the outward
wave propagation. This allows one to limit the computa-
tional domain to the internal part of the waveguide, and
hence to reduce the computational time and resources.

This expression can be numerically integrated5 by com-
puting the values of wm and wn on a Cartesian grid of N
points and approximating the integrals of Eq. (1) by finite
Riemann summations5
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with hab ¼
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2

q
and hab 6¼ 0:

In Eq. (3), the necessity to satisfy the condition hab 6¼ 0
compromises the accuracy of the computation. In order to
work around this limitation, the points on which the ampli-
tude of one of the transverse modes, wm in this case, is com-
puted and distributed in a polar grid of coordinates (r, h) (see
Fig. 1). A new polar grid, represented by dots in Fig. 1, is
generated for each point (x1, x2) of the Cartesian grid. The
radial and angular spacing of this grid are chosen so that the
distance between the more external points is of the same
order of magnitude as the Cartesian grid spacing. This yields
a number of points Np of the polar grid slightly higher thana)Electronic mail: remi.blandin@gmail.com
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the one of the Cartesian grid N. The origin of the polar land-
marks is set on the points (x1, x2) so that the radial coordinate
is equal to h which can be expressed as r. Thus, the origin is
moved for each point (x1, x2) expressed in Cartesian coordi-
nates. In this case, the infinitesimal area element is expressed
as dS ¼ rdrdh in the polar landmarks, and Eq. (1) becomes

Zmn ¼
jxq
2pS2

ð

S

ð

S
wm r; hð Þwn x1; x2ð Þe$jkrdrdhdx1dx2:

(4)

Thus, the division by h, which implies the condition h 6¼ 0
for Eq. (1), is avoided.

Because a regular Cartesian discretization over x1 and x2

induces an irregular discretization over r and h, it is neces-
sary to generate the second grid of Np points regularly
spaced over r and h. This insures that the area element dS
can be expressed as hdrdh for each point (rb,hb) and that the
proposed simplification can be applied. As a consequence, a
new grid is generated for each point (x1a, x2a) and discretiza-
tion of Eq. (4) yields
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One must divide the polar coordinate summation byPNp

b¼1 hab for each value of a as a discretization of
Ð

Shdrdh.

III. VALIDATION AND APPLICATION

In order to validate the numerical method described in
Sec. II, its outcomes are compared to values obtained with
known expressions given by Zorumski3 and Kemp et al.4 All
the mode shapes and cutoff wavenumbers presented hereaf-
ter are computed under the assumption of a hard wall bound-
ary condition. The integrals of these expressions are
computed with a standard trapezoidal method.5

The radiation impedance matrix is computed for
all transverse modes whose product kcl of the cutoff

wavenumber kc and half of the square root of the cross-
sectional area6 l ¼

ffiffiffi
S
p

=2 yields less than 10. A non-
dimensional grid density r ¼ D=dx1;2, with dx1;2 ¼ dx1 or
dx1;2 ¼ dx2 and D taken as the smallest distance between the
shape’s boundary and its center, is used to characterize the
accuracy of the approach. Defining r as a function of D rather
than of a characteristic length of the cross-section shape, e.g.,
radius of the circle or side length of the square, improves the
homogeneity of the accuracy obtained with different shapes.
The data computed by the numerical method (5) and the
expression given by Kemp et al.4 are normalized by qc=S since
this normalization is applied in the expression given by
Zorumski3 with air sound velocity c¼ 343 m/s (corresponding
to a temperature of 20 (C).

The error !r for a given value of r is computed as the
maximal term by term difference between the radiation
impedance matrices Zr obtained with Eq. (5) and Z from the
specific expressions,3,4

!r ¼ maxðjReðZrÞ $ ReðZÞjÞ

þ jmaxðjImðZrÞ $ ImðZÞjÞ;

where Re and Im are the real and imaginary parts, respec-
tively. The variation of the error !r with the density r is

FIG. 1. Simultaneous Cartesian and polar discretization of the cross-sectional
surface at point (x1, x2).

FIG. 2. Maximal term by term error !r between the radiation impedance
matrices computed numerically and with the expressions provided
by Zorumski (Ref. 3) and Kemp et al. (Ref. 4) as a function of the non-
dimensional grid density r for circular and square cross-sectional shapes.

TABLE I. Parameters a and b of the model f ðrÞ ¼ ar$b fitted on the error !r
shown in Fig. 2 between the radiation impedance matrices Zr computed for
various grid densities r and Z from the dedicated expressions (Refs. 3 and 4).

Shape Part a b

Circular Real 6.8 1.9

Imaginary 17 2.0

Square Real 5.9 1.8

Imaginary 18 1.9
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presented in Fig. 2. One can see that the numerical computa-
tion converges towards the known solutions. A model of the
type

f ðrÞ ¼ ar$b;

with parameters a and b is fitted with linear regression to the
variations of the real and imaginary part of !r in order to
estimate the rate of convergence. All the correlation coeffi-
cients obtained for these fits are superior to 0.99, indicating a
good correlation. The coefficients a and b thus obtained are
presented in Table I.

One can see that a is higher for the imaginary part, indi-
cating an error slightly more important for the imaginary
part which can be seen as a shift between Re(!r) and Im(!r)
in Fig. 2. The coefficient a is very close to 2 for both a circu-
lar and square cross-section shape, indicating a global sec-
ond order convergence rate, i.e., decay of the error on the
order of r$2 for this method.

The proposed method is applied to the case of the arbi-
trary shape depicted in Fig. 1. The transverse modes Arm are
computed using finite differences on the same Cartesian
grid.7 The mode shapes Cmn, Qmn corresponding to a circular
and a square cross-sectional shape, respectively, are com-
puted which specific expressions which can be found in clas-
sical textbooks.8 All shapes have the same cross-sectional
area.

The real and imaginary parts of the diagonal terms of Z
for transverse modes having two nodal lines ZC20;C20

, ZQ02;Q02
;

and ZAr3;Ar3
are presented in Fig. 3(a) as a function of

normalized wavenumber kl. The mode shapes and normal-
ized cutoff wavenumbers kcl corresponding to these modes
(C20, Q02, and Ar3) are presented in Fig. 3(b). The radiation
impedance of the three shapes is very similar up to kcl.
Above this value (kl> kcl), the cross-sectional shape induces
differences in losses (real part) and phase shift (imaginary
part).

The coupling terms of Z between the plane mode
(kc¼ 0) and transverse modes C01, Q02, and Ar6 are plotted
in Fig. 4(a). The corresponding mode shapes and normalized
cutoff wavenumbers kcl are presented in Fig. 4(b). Important
differences can be observed for almost the whole wavenum-
ber range.

IV. CONCLUSION

A general numerical expression is proposed for the com-
putation of the multimodal radiation impedance matrix of a
waveguide with arbitrary cross-sectional shape. The problem
of the singularity at the point (0, 0) is treated through the
simultaneous use of two different grids of points regularly
spaced in a Cartesian and a polar coordinate system, respec-
tively. The convergence of the method is on the order of
r$2, which confirms the interest from a computational point
of view. Application to different shapes including an arbi-
trary one shows the relevance of computing shape-specific
radiation impedances rather than relying on approximations.
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