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Summary
The influence of initial aperture and mechanical properties on the onset pressure thresholds and oscillation fre-
quencies is experimentally assessed on a deformable vocal fold replica in case of strong and weak acoustical
coupling. The mechanical replica enables to vary the initial aperture while mechanical properties are maintained
and therefore to mimic abduction and adduction gestures of human phonation. Depending on initial conditions
(geometrical, mechanical and acoustical) one or two oscillation regions are experimentally found for which im-
portant differences are observed for both oscillation onset pressure thresholds and oscillation frequencies. Mea-
sured onset pressure thresholds are used to validate the outcome of a theoretical model of phonation using a
reduced mechanical model. The applied coupling stiffness in the theoretical model is estimated from the mea-
sured frequency response instead of imposed by an ‘ad-hoc’ criterion. The variations in coupling stiffness result
in a qualitative agreement between predicted and measured values for all assessed experimental conditions. In
addition, the Young’s modulus of the replica is qualitatively estimated to be within the range observed ‘in-vivo’.

PACS no. 43.70.Bk, 43.70.Jt

Introduction

Theoretical phonation models aim to mimic the physio-
logical fluid-structure interaction during vocal fold self-
sustained oscillations. The relevance of phonation model-
ing requires a faithful triple relationship between 1) model
parameters, 2) ‘in-vivo’ physiological meaningful vari-
ables and 3) ‘in-vitro’ measurable quantities. Simplified
theoretical phonation models, like one or two mass mod-
els [1, 2, 3] are of interest for their limited number of input
parameters favouring the relationship with ‘in-vivo’ physi-
ological variables. Moreover, the incessant development of
‘in-vivo’ measurement techniques allows to quantify me-
chanical ‘in-vivo’ properties [4, 5].

In particular studying the models/system behaviour for
varying parameters which can be controlled during ‘in-
vivo’ speech utterances is of interest. Therefore, the sub-
glottal pressure is varied since the subglottal pressure
drives the pressure drop along the glottis and consequently
the forces exerted by the flow on the surrounding walls
at the origin of the fluid-structure interaction generating
vocal folds self-sustained oscillations. Besides the driving
pressure, variation of mechanical parameters and the ini-
tial aperture are important since they can be directly re-
lated to important physiological parameters such as mus-
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cle activity and are controlled ‘in-vivo’ at the voicing onset
in speech utterances by laryngeal abduction and adduction
gestures [6, 7, 8, 9].

Validation of theoretical models and their behavior in
terms of accuracy, reproducibility and sensitivity to each
individual parameter variation requires a suitable mechan-
ical vocal fold replica and experimental setup. The use of
an experimental setup allows focusing on the modeling of
specific physical issues involved in the oscillatory cycle,
which can hardly be attempted ‘in-vivo’ since ‘in-vivo’
phonation presents itself as an indivisible entity which
can not be split up into distinct separable and controllable
events. So although ‘in-vivo’ observations are a bench-
mark for the phenomena under study [10, 11, 6, 4, 7, 9],
mechanical replicas with increasing degrees of complex-
ity are developed in order to validate theoretical models
[12, 13, 14, 15, 16, 17, 18]. In [14] the initial aperture is
varied from 0 up to 2 mm, while the ‘in-vitro’ replica is
an asymmetric geometry consisting of one ‘in-vitro’ vocal
fold placed in a 9 cm channel so that a rectangular glottis
is obtained. In addition, it was aimed to study the vocal
fold mucosa and therefore the vocal fold body was rigid
so that the influence of mechanical parameters such as the
stiffness could not be studied.

The current paper presents an experimental study of the
influence of varying initial aperture and mechanical prop-
erties on predicted oscillation onset pressure and oscil-
lation frequency for weak and strong acoustic coupling
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since recent modelling studies point out its importance
[19, 20]. Next, particular attention is given to the esti-
mation of model parameters from experimental observa-
tions. Finally, theoretical predictions are validated on a de-
formable replica.

1. Theoretical symmetrical vocal fold
model

Theoretical modeling of self-sustained oscillations of a vo-
cal folds replica is performed by using a theoretical sym-
metrical two mass model inspired on the work presented
in [3, 21] and briefly detailed in Appendix A1. Each of the
vocal folds is modeled as a reduced spring-mass-damper
system with two degrees of freedom driven by the pres-
sure difference across the masses. The applied models de-
scribing glottal airflow, vocal folds mechanics and acoustic
interaction with an upstream and downstream pipe, rep-
resenting the trachea and the vocal tract, are severe sim-
plifications of the fluid-structure interaction in the larynx
during human voiced sound production.

The airflow model relies on the assumption of a quasi-
steady inviscid and incompressible flow within the glottis
corrected for some major viscous effects, firstly in case of
small glottal apertures and secondly to account for flow
separation and the formation of a jet [22]. The main pa-
rameters related to the flow model are the time evolution
of the driving subglottal pressure Pu(t), the time evolution
of the glottal cross sectional areaA(x, t), where x indicates
the flow direction, and the position of the flow separation
point. Liljencrants ‘ad-hoc’ separation criterion is applied
to define a moving separation point in the diverging down-
stream part of the constriction at a position corresponding
to the glottal area As = csAmin, with Amin the minimum
constriction area and cs > 1 an ‘ad-hoc’ separation con-
stant.

The vocal folds mechanics is modeled as a symmetrical
low order model in which each vocal fold is represented
by two identical masses [3, 21]. The two mass model des-
cribes the movement of the two masses perpendicular to
the flow direction assuming a rectangular glottal area with
fixed width w. The geometrical description could thus be
given in terms of the center aperture of the glottal area, i.e.
hc = A/w. Except geometrical parameters as e.g. mea-
sured initial aperture h0

c and subglottal pressure Pu ex-
pressing the coupling with the flow model, the main pa-
rameters required in the mechanical model are mass m,
spring stiffness K, coupling stiffness Kc between the two
masses, dampingR and critical aperture threshold hcrit ap-
plied in the discrete collision model. Notice that in the cur-
rent model the collision model was triggered on the glottal
aperture, independent from the impact velocity. Whenever
collision was detected following the criterion hc < hcrit
the values of K and R are increased to K = 4K and
R = R+2

√
Km. The fixed collision threshold hcrit is com-

monly set to 0.02 mm. This threshold value is validated to
be suitable in case the assumption of a rectangular area

Table I. Theoretical model input parameters.

Flow model parameter set {Pu(t), h0
c , cs}

Pu(t) (subglottal) upstream pressure [Pa]
h0
c initial aperture [mm]
cs ‘ad-hoc’ separation constant [-] (fixed at 1.2)

Mechanical model parameter set {hcrit, m,K,R, γ}
hcrit ‘ad-hoc’ critical aperture threshold [mm]

(fixed at 0.02)
m mass [kg]
K spring stiffnes [kg/s2]
R damping [kg/s]
γ coupling parameter [–]

Acoustical model parameter set {Ld}
Ld downstream pipe length [cm]

with fixed length was made and consequently hc fully de-
scribed the geometry [23]. The two masses have the same
mechanical parameters K, R and m as systematically de-
picted in Figure A1.

Commonly, the coupling stiffness is ‘ad-hoc’ defined as
Kc = 0.5 · K [3, 21]. In the following, we describe the
relationship between stiffness K and coupling stiffness Kc

by introducing an additional model parameter γ, labelled
coupling parameter, defining a linear relationship as γ =
Kc

K . Recall that introducing the parameter γ is consistent
with a fixed time-delay between two masses in a delayed
one-mass model [21].

Acoustical coupling between the vocal folds and a uni-
form downstream pipe, representing the vocal tract in the
model, is important when the acoustical resonance fre-
quencies of the pipe and the oscillation frequency are
close. Therefore, the importance of acoustical coupling
with a downstream pipe depends on its length Ld [24, 21,
19, 20].

Required model input parameters are summarised in Ta-
ble I. Except for the ‘ad-hoc’ separation constant cs and the
fixed critical aperture threshold hcrit = 0.02 their values
are sought to be determined from experimental observa-
tions.

2. ‘In-vitro’ setup

The experimental setup and deformable ‘in-vitro’ vocal
fold replica are described in sections 2.1 and 2.2 and il-
lustrated in Figure 1. Table II gives an overview of the ex-
perimentally varied and observed parameters as explained
in the following sections.

2.1. Experimental setup

The deformable replica detailed in section 2.2 is mounted
in an experimental setup in order to generate self-sustained
oscillations and to measure characteristic oscillation quan-
tities. An air supply is connected to a pressure tank of
0.75 m3 filled with acoustical foam, enabling to impose
an airflow through the deformable replica. The pressure
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Figure 1. (a) Schematic overview of experimental setup with [a]
water column with controllable height connected to the vocal
fold replica [g] detailed in (b) with [h] downstream pipe of vari-
able length Ld and upstream pipe [f] with pressure tap to mea-
sure the upstream pressure [e] and which is mounted to the pres-
sure reservoir [c] to which air is supplied [d]. The deformation of
the replica is measured by means of a laser beam (dashed line)
emitted from source [b] and brought to focus on the light sen-
sitive sensor [i]. (b) Schematic representation of the deformable
replica. Latex tubes [a] are connected to water column [c] en-
abling to impose the internal pressure Pin. Each latex tube is
mounted in a metal block [b,b’] by means of fixation screws [e].
The initial geometrical configuration in absence of airflow was
characterized by the center aperture h0

c . h
0
c is varied 1) by im-

posing internal pressure Pin and 2) by inserting a set of shims
[d] between the outer parts of the upper and lower portion of the
mounting block. In absence of shims the aperture is minimal [d’].

upstream from the replica, Pup, is measured by means of a
dynamic piezo-resistive pressure transducer (Kulite XCS-
093) positioned in a pressure tap of 0.4 mm diameter in
an upstream uniform pipe with diameter 25 mm and fixed
length of 3.5 cm. The pressure transducer is calibrated
against a water manometer with an accuracy of 1 Pa. The
attached downstream circular pipes, forming the artificial
vocal tract, have a fixed internal diameter of 25 mm and
variable length L of 49.5, 28.6 or 18.5 cm respectively. In
the following, the downstream pipes are indicated by sub-
scripts 50, 28 and 18. The corresponding first f1

ac and sec-
ond f2

ac acoustical resonance frequencies for upstream and
downstream pipes are given in Table III.

The instantaneous replica aperture hc(t) is observed
by means of a laser beam (635 nm) passing through the
replica and brought to focus on a light sensitive sensor
(BPW 34). The optical laser system is calibrated to re-
late the transmitted light intensity of the original beam to
the center distance hc between the two tubes at the center
of the aperture area. This way time-varying center aper-

Table II. Experimentally controlled and observed variables.

Controlled parameters
Pup upstream air pressure [Pa]
Pin internal water pressure in latex tubes [Pa]
h0
c initial aperture [mm] (by means of shim d)
L upstream circular pipe length [cm]

Observed parameters
Pon minimum Pup required for self-sustained

oscillation [Pa]
f oscillation frequency [Hz]

Table III. First and second acoustical resonance frequencies f1,2
ac

for upstream pipe length 3.5 cm (Lup) and assessed downstream
pipe lengths of 18.5 (L18), 28.6 (L28) and 49.5 cm (L50).

L [cm] Lup L18 L28 L50

f1
ac [Hz] 2429 460 297 172
f2
ac [Hz] 4857 919 594 344

tures hc(t) up to 8 mm are measured with an accuracy of
0.01 mm. The measured aperture hc(t) is related to the
open area by assuming a uniform rectangular open area
with fixed length w = 25 mm being the constant width of
the replica exposed to the airflow, i.e. Ac(t) = hc(t)w.
The assumption of a rectangular area, Ac(t) = hc(t)w,
and hence of a uniform displacement is validated for the
replica under study by means of a camera imaging the
open area [23]. This way the deformation of the replica
due to the interaction with airflow is observed while in-
creasing the upstream airflow from 0 up to 3000Pa in or-
der to detect the required minimum pressure Pon for which
self-sustained oscillation occurs and the associated oscil-
lation frequency f . The aperture measured for Pup = 0
corresponds to the imposed initial aperture h0

c . In addition,
measurement of the deformation hc(t) due to acoustical
excitation is performed to determine the mechanical fre-
quency response of the replica [25, 21].

2.2. Deformable replica

The deformable replica, illustrated in Figure 1b, mimics
the deformable physiological vocal fold structure by two
connected latex tubes (Piercan Ltd.), with density 0.98
g/cm3 and Young’s modulus 0.35 MPa, of 11 mm diam-
eter and 0.3 mm thickness. The tubes are mounted on two
metal cylinders with diameter 12 mm for which the metal
was removed over half the diameter for a length of 40 mm.
The latex tubes are filled with water supplied through a
central duct of 3 mm diameter connected to a water col-
umn. The height of the water column, and so internal pres-
sure Pin in the latex tubes, is controllable. The latex tubes
are fixated in a metal block in order to prevent leakage. In-
creasing or decreasing the internal pressure Pin by lifting
or lowering the water column implies a change in initial
aperture between the two tubes and consequently the two
parameters are related in a unique way. In order to vary
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the initial aperture and Pin in a non-unique way an equal
set of uniform rectangular metal blocks with fixed length
(12 mm), fixed width (16 mm) and variable thickness d,
further referred to as shims d, can be inserted at the outer
borders between the upper and lower portion of the replica
separating both latex tube holders to a user controlled ex-
tent. This way, the initial center aperture at rest h0

c is ar-
bitrarily varied from complete closure h0

c = 0 to a maxi-
mum aperture of h0

c = 10 mm. In the present work, shims
of thickness d = 0.0 (absence of shims), d = 0.5 and
d = 1.0 mm are used in order to significantly vary the ini-
tial aperture of the replica and to experimentally explore a
considerable region in the (Pin, h0

c ) parameter space. Note
that by using three different shims d, three different h0

c

are associated with each Pin. For each shim d, the inter-
nal pressure is gradually increased in steps of 500 Pa from
500 Pa up to complete closure, i.e. h0

c = 0. The resulting
variation of h0

c (Pin, d) is illustrated in Figure 2 for the 3
used shims d.

Closure of the replica (h0
c=0 mm) occurred at Pin =

8000, 9500 and 11000 Pa in case of shims 0.0, 0.5 and
1.0 mm, respectively. For all imposed Pin, so Pin = c with
c a constant, the use of different shims d introduces a vari-
ation of h0

c (Pin = c, d) corresponding to about 16% at Pin
= 500 Pa which increases up to 50% upon closure. The
dashed line represents a linear fit of h0

c (Pin, d) from which
the deformation ∆h0

c (d) is obtained. The initial measured
center aperture h0

c determines the geometry in the model
since a rectangular open area is assumed to model the glot-
tal area.

Recall that varying Pin by lifting or lowering the wa-
ter column changes the mechanical properties and the to-
tal mass of the latex tubes. For all assessed configurations
(d, Pin), the total mass is estimated to be less than 3 g based
on geometrical considerations.

3. Experimental and model parameters

Except for ‘ad-hoc’ parameters which are inherent to the
model, such as cs and hcrit, comparison of measured and
predicted quantities requires input parameters of the the-
oretical model to be determined from experimentally im-
posed quantities as shown in Table IV.

The sought relationship is straightforward in case of
parameters required in the flow and acoustic model. The
measured upstream pressure Pup corresponds to the driving
pressure Pu in the theoretical model. The initial aperture
corresponds to h0

c and the experimentally assessed down-
stream pipe length L corresponds to the model parameter
Ld. The mechanical model parameters m, K, R and γ on
the other hand, need to be estimated from the measu red
mechanical resonance properties of the replica imposed
by Pin. In addition, the Young’s modulus E of the replica
can be estimated from the measured frequency response
and deformation estimated by the slope of h0

c (Pin, d) as
shown in Figure 2. Therefore, parameter estimation from
the measured mechanical frequency response is detailed in
the next subsections.

0 2000 4000 6000 8000 10000
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Figure 2. Measured initial center apertures h0
c (Pin, d) for shims

d = 1.0 (+), d = 0.5 (4) and d = 0.0 (◦) mm as function of
Pin. The dashed lines indicated a linear fit for each shim set with
slope -0.00062, -0.00063 and -0.00076 for shims 1.0, 0.5 and 0.0
respectively.

Table IV. Relationship between theoretical model input param-
eters and experimental control parameters is either straightfor-
ward (direct) or obtained from the measured frequency response
(F,Q) as function of Pin. Recall that both cs (flow) and hcrit (me-
chanical) are ‘ad-hoc’ model parameters for which no relation-
ship with experimental quantities is sought and they are therefore
omitted in the table.

theoretical experimental relation

flow {Pu(t), h0
c} {Pup(t), h0

c} direct
mechanical {m,K,R, γ} {Pin} (F,Q)
acoustic {Ld} {L} direct

3.1. Estimation of stiffness K, damping R and mass
m

The mechanical resonance characteristics inform on the
resonance frequencies F , i.e. the resonance peaks in the
frequency domain ω, and associated quality factors Q
[25]:

Q =
F

∆F−3dB
, (1)

with ∆F−3dB the −3 dB bandwidth. The obtained exper-
imental parameters Fi and Qi, with peak index i, corre-
spond to the sought quantities ωi = 2πFi andQi in the me-
chanical equations of low-order physical vocal fold mod-
els. The effective mass µi is than estimated for each res-
onance peak by fitting the magnitude of the mechanical
response, |C(ω)|, in the neighborhood of the ith peak as

∣

∣C(ω)
∣

∣ =

Qi

ω2
i

1
|µi|

√

1 + 4Q2
i

(

ω−ωi
ωi

)2

∣

∣

∣

∣

ω≈ωi

≈
Qi

ω2
i µi

. (2)

The vibrating mass portion is approximated as m ≈ µi ×
w × l with w = 0.024m the uniform width of the glottal
replica and l = 0.008m the length of the replica in contact

4
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Figure 3. The model coupling parameter γ(β) = 1
2

[

β2 − 1
]

with
β = ωb

ωa
> 1 relates K and Kc as expressed in equation (5). The

common ‘ad-hoc’ model value γ(β =
√

2) = 0.5 (×) is indicated
as well [3, 21].

with the fluid, so that w × l represents the effective sur-
face on which the pressure acts. The stiffness K and the
damping R are obtained as

K ≈ mω2
i R ≈ m

ωi
Qi
. (3)

The stiffness K increases as the resonance frequency in-
creases. A small Qi value or large bandwidth corresponds
to a large damping Ri of the resonance peak and vice-
versa.

3.2. Estimation of the coupling parameter γ

The coupling stiffness Kc is commonly ‘ad-hoc’ fixed to
half the spring stiffness K, i.e. Kc = 0.5 · K or γ = 0.5
[3, 21]. In order to relate Kc to the measured mechanical
response and therefore to avoid a fixed ‘ad-hoc’ value, the
following relations are taken into account [26]:

ωa =

√

K

m
, ωb =

√

K + 2Kc

m
, (4)

with ωa < ωb two measured mechanical resonance fre-
quencies for a given Pin. From equation (4) follows imme-
diately:

γ =
Kc

K
=

1
2

[

ω2
b

ω2
a

− 1

]

=
1
2

[

β2 − 1
]

, (5)

with β defined as

β =
ωb
ωa

> 1. (6)

The impact of the quadratic relationship γ(β) on the range
of estimated γ values is illustrated in Figure 3.

The common ‘ad-hoc’ value γ = γ(β =
√

2) = 0.5 cor-
responding to ωb =

√
2ωa is indicated as a benchmark. As

will be shown further, the illustrated β-set, β ∈]1 3.5] ⇒
γ ∈]0 5.6], is relevant with respect to the performed ‘in-
vitro’ experiments.

3.3. Estimation of Young’s modulus E

The Young’s modulus EL, where the subscript L indicates
that the Young’s modulus is associated with the mechani-
cal resonance frequency ωL, is estimated from the stiffness
as:

EL(ωL) =
K

∆h0
c

, (7)

with mass m, stiffness K = mω2
L and ∆h0

c denoting the de-
formation induced by varying Pin as pointed out in section
2.2 and Figure 2.

4. Experimental results and discussion

Parameters estimated from the measured mechanical fre-
quency response are presented in subsection 4.1. Next, the
measured minimum pressure required for self-sustained
oscillation of the replica Pon and corresponding oscillation
frequency f are discussed in subsection 4.2.

4.1. Mechanical frequency response and parameter
estimation

The mechanical frequency response of the replica is de-
termined by the internal pressure Pin. For each Pin, two
or three mechanical resonance frequencies F and associ-
ated bandwidths Q are measured. It is shown in Figure 2
that due to the use of three different shims d, three initial
apertures h0

c are associated with each assessed Pin value.
Consequently, mechanical resonance properties F and Q
can be expressed as function of Pin or plotted against the
three corresponding h0

c (Pin, d). Mechanical features F and
Q are expressed as function of h0

c rather than Pin since h0
c

is a model input parameter whereas Pin is an experimental
control quantity used to vary mechanical properties in a
quantitative and controllable way. Obtained F and Q val-
ues are shown in Figure 4 for h0

c (Pin, d) obtained for shim
d = 1.0 mm.

Figure 5 gives an overview of resulting F (h0
c (Pin, d))

for all three assessed shims d = 0.0, d = 0.5 and d =
1.0 mm. For clarity the maximum measured aperture for
each shim as well as the relevant Pin-range and Pin-values
associated with maximum aperture and complete closure
are indicated. Consequently, 3 distinct mechanical feature
sets, (F,Q)(h0

c ), are experimentally assessed while h0
c is

maintained fixed.
For each resonance peak, the mass m is estimated from

the mechanical frequency response following eq. 2. Re-
sulting mass estimations are illustrated in Figure 6 for the
first and second resonance frequencies.

As for F and Q, the mass estimation m associated with
the geometrical model parameter h0

c depends on the used
shim d. The estimated mass values (m < 1 g) are smaller
than the geometrical maximum mass estimation of 3 g.

The model parameters K and R are analytically ob-
tained from the set (m,F ,Q) and depend therefore on Pin as
well as h0

c (Pin, d). Furthermore, from Figure 5, F1 ≈ 106

5
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Figure 4. First (+), second (×) and third (◦) mechanical reso-
nance frequencies F (Pin) and associated quality factors Q(Pin).
The relationship F (h0

c ) and Q(h0
c ) is obtained from h0

c (Pin, d) as
shown in Figure 2. This is illustrated for shim d = 1.0 mm. The
dashed lines illustrate Pin values associated with complete clo-
sure in case of shim d = 0.5 (9500 Pa) and d = 0.0 (8000) Pa.

0 1 2 3 4 5 6

50

100

150

200

250

300

350

400

h

c

0

[mm]

F
 
[
H

z
]

Pin

9500

8000

11000

500

500

500

Figure 5. First (+), second (×) and third (◦) mechanical reso-
nance frequencies F (h0

c ), using h0
c (Pin, d), for each of the shims

d = 0.0 (dotted), d = 0.5 (dashed) and d = 1.0 (full) mm. The
Pin range from maximum aperture at Pin = 500 (vertical dashed
lines) up to closure is indicated for each of the 3 shims d.

and F2 ≈ 222 Hz are seen to be rough estimates of the
magnitude of the first and second mechanical resonance
frequencies for all 3 shims d. For both frequencies the cor-
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Figure 6. Mass estimation m as a function of the initial aperture
h0
c estimated on a) first F1 and b) second F2 mechanical reso-

nance frequency for each of the shims: 0.0 (dotted), 0.5 (dashed)
and 1.0 (full) mm.
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Figure 7. Estimation of the Young’s modulusE(m) for resonance
frequencies of 106 Hz (straight lines) and 222 Hz (dashed lines)
and linear fits of h0

c (Pin, d) as shown in Figure 2 for each of the
shims: d = 1.0 (+), d = 0.5 (4) and d = 0.0 (◦).

responding Young’s modulus E(F1,2) is qualitatively es-
timated by applying eq. 7 with thedeforma tion ∆h0

c (d)
taken from the linear fit of h0

c (Pin, d) shown in Figure 2.
Resulting Young’s modulus estimations are shown in Fig-
ure 7.

The estimated Young’s modulus for shims 1.0 and 0.5
almost overlap since the slopes of the linear fit, and so
the deformation, for shims d = 1.0 and d = 0.5 are in
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a close match. The estimated Young’s modulus for shim
d = 0.0 mm is smallest due to the large deformation, i.e.
large slope magnitude as shown in Figure 2. Since the
stiffness K increases linear with increasing m, the esti-
mated Young’s modulus increases linearly with m. The re-
trieved values are within the order of magnitude reported
for ‘in-vivo’ estimations [10, 11], although reported ‘in-
vivo’ values vary significantly (1-20 kPa). Recall that both
the magnitude of the gathered resonance frequencies as
well as the number of resonances peaks on the ‘in-vitro’
measured mechanical resonance frequencies are relevant
with respect to ‘in-vivo’ observations [4].

Acoustical resonance frequencies fac summarised in
Table III of the upstream pipe of 3.5 cm are much larger
than mechanical resonance frequencies, i.e. fac > 400 Hz,
so that upstream acoustical coupling can be neglected for
the current setup [24]. For the downstream pipes acousti-
cal coupling is important for L50 and L28 and not for L18.
In particular fac,150 = 172, fac,128 = 297 and fac,250 = 343 Hz
are within the range of mechanical resonance frequencies.

The mechanical coupling parameter γ(β(h0
c )) is esti-

mated from the ratio of resonance frequencies β as out-
lined in section 3.2. Following equation (6) three β’s, i.e.
β1,2,3, can be defined from the experimentally observed
resonance frequencies,

β1 =
F2

F1
, β2 =

F3

F2
, β3 =

F3

F1
. (8)

Obviously, if no third resonance frequency F3 is experi-
mentally observed, only β1 can be quantified. The same
way as for F andQ, for each assessed shim d, firstly β(h0

c )
and next γ(h0

c ) is deduced for the mechanical resonance
frequencies as illustrated for shim d = 1.0 mm in Figure 8.
Figure 9 illustrates γ(h0

c (Pin, d)) for all 3 shims d.
This way, all mechanical model parameters (except the

‘ad-hoc’ collision threshold hcrit) are estimated from ex-
perimental data and no ‘ad-hoc’ parameter, corresponding
to γ = 0.5, is needed to determine the coupling stiffness.
Moreover experimentally estimated γ values cover the do-
main shown in Figure 3.

4.2. Auto-oscillation features

Experimentally observed upstream pressures at self-sus-
tained oscillation onset Pon(h0

c ) and associated oscillation
frequencies f (h0

c ) are presented in Figure 10 and 11 for
each of the 3 assessed downstream pipes. The experi-
mental observed Pon and oscillation frequencies f depend
on the initial center aperture h0

c , the mechanical proper-
ties imposed by Pin and the acoustical coupling with the
downstream pipe of length L. Based on the initial cen-
ter aperture h0

c , two oscillation regions, further labelled I
and II, are experimentally identified for h0

c < 2.2 mm and
h0
c > 4 mm respectively. No vibration was observed for

values of h0
c in between the two oscillatory regimes. The

main characteristics of both oscillation regions are sum-
marised in Table V.

The first (h0
c < 2.2 mm) oscillation region I, charac-

terised by 1000 < Pon < 2500 Pa and 145 < f < 270

1 2 3 4 5 6

1

1.5

2

2.5

3

3.5

h

c

0

[mm]

β
[
-
]

Pin

11000 9500 8000 500

1 2 3 4 5 6

0

1

2

3

4

5

h

c

0

[mm]

γ
[
-
]

Pin

11000 9500 8000

Figure 8. a) β(h0
c ) for shim d = 1.0 mm. β1 (+), β2 (×) and β3

(◦) derived as F2/F1, F3/F2 and F3/F1 respectively. b) γ(h0
c )

for shim d = 1.0 mm. γ(β1) (+), γ(β2) (×) and γ(β3) (◦). The
straight full line indicates γ = 0.5 corresponding to β =

√
2

depicted in (a). The dashed lines illustrate Pin values associated
with closure for shim d = 0.5 (9500 Pa) and d = 0.0 (8000) Pa.

1 2 3 4 5 6

0

1

2

3

4

5

h

c

0

[mm]

γ

[
-
]

Pin

9500

500

500

500

11000

8000

Figure 9. γ(h0
c ) for each of the shims 0.0 (dotted), 0.5 (dashed)

and 1.0 (full) mm and γ(β1) (+), γ(β2) (×) and γ(β3) (◦). The
straight full line indicates γ = 0.5 in accordance with β =

√
2

depicted in Figure 8a. The Pin range from maximum aperture
(Pin = 500) up to closure is indicated for each of the shims.

Hz, is experimentally observed for all assessed down-
stream pipes and shims d. Nevertheless, observed Pon and

7
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Figure 10. The measured oscillation onset pressure Pon as a func-
tion of the initial aperture h0

c for different downstream resonators
of length L and shims, i.e. d = 1.0 (+), d = 0.5 (4) and d = 0.0
(◦) mm. I and II indicate the first (h0

c < 2.2 mm) and second
(h0
c > 4 mm) oscillation region, respectively. (a) L = 49.5 cm,

(b) L = 28.6 cm, (c) L = 18.5 cm.

Table V. Main observations for oscillation regions.

osillation region I II

h0
c [mm] h0

c < 2.2 h0
c > 4

Pin [Pa] Pin > 5000 Pin < 2000

Pon [Pa] 1000 < Pon < 2500 400 < Pon < 700
f [Hz] 145 < f < 270 100 < f < 170

f values for a same initial aperture value h0
c obtained with

different shims d vary significantly, e.g. 1400 < Pon <
2300 Pa for h0

c ≈ 1 mm. The observed variation results
from the large variation of mechanical properties associ-
ated with different shims d when a fixed initial aperture
in the region h0

c < 2.2 mm is considered, e.g. h0
c ≈ 1 mm
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1 2 3 4 5 6
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[
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z
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I

Figure 11. The measured oscillation frequencies f as function
of the initial aperture h0

c for different downstream resonators of
length L and shims, i.e. 1.0 (+), 0.5 (4) and 0.0 (◦) mm. I and II
indicate the first (h0

c < 2.2 mm) and second (h0
c > 4 mm) oscilla-

tion region, respectively. (a) L = 49.5 cm, (b) L = 28.6 cm, (c) L
= 18.5 cm.

corresponds to a variation of 6500 < Pin < 10000 Pa in
Figure 5.

The second (h0
c > 4 mm) oscillation region II, charac-

terised by 400 < Pon < 700 Pa and 100 < f < 170 Hz, is
experimentally observed for L28 and L18 in case of shims
d = 0.0 and d = 0.5 mm and is absent for L50 and shim
d = 1.0 mm. The close agreement (< 10 %) in the obser-
vations for shims 0.0 and 0.5 mm in this second region is
due to the small differences in mechanical properties and
in h0

c (< 5%) as seen in Figure 2. Therefore, mechanical
properties for a given initial aperture h0

c > 4 for d = 0.0
and d = 0.5 mm closely match (see Figure 5).

The influence of acoustical coupling with the down-
stream pipe on the measured oscillation frequencies f is
observed in the first oscillation region (h0

c < 2.2 mm) in
case the longest assessed pipe length L50 is used. The first
acoustical resonance frequency, equal to 170 Hz reported

8
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Table VI. Applied parameter estimations for γ(β1), γ(β2), m(F1)
and m(F2) for oscillation regions I and II. Values in bold result in
a qualitative good estimation of the onset threshold pressure.

osillation region I II
h0
c [mm] ]hcrit 2.2] [4 6]

γ(β1) [-] 0.25 0.80
γ(β2) [-] 1.69 1.29

m(F1) [g] [0.08 0.22] [0.27 0.01]
m(F2) [g] [0.1 1.02] [0.24 0.02]

in table III, is seen to impose the oscillation frequency f .
The observed strong acoustical coupling is in agreement
with findings reported in [24]. For shorter pipe lengths
acoustical coupling is weaker and does not influence f .
In case of weak acoustical coupling, the observed oscil-
lation frequencies 180 < f < 280 approach F2 and F3

in the first oscillation region. So, the third and second me-
chanical resonance frequencies are favored due to the large
damping for F1 as seen from the low value of Q1.

In general, the measured oscillation features Pon and f
are shown to depend on initial mechanical (F,Q imposed
by Pin), geometrical (h0

c (d, Pin)) and acoustical coupling
conditions with the downstream pipe (L).

5. In-vitro validation and discussion

In order to validate the model (and the parameter esti-
mation) predicted oscillation onset pressure thresholds are
compared to experimentally observed values Pon. Experi-
mental and simulated Pon as function of initial center aper-
ture h0

c > hcrit are presented in Figure 12. Simulations are
performed with model parameters estimated as outlined in
section 3 and the coupling stiffness derived from β1 and
β2. Only values h0

c > hcrit del validation in order to avoid
the influence of the ‘ad-hoc’ parameter hcrit mm used in
the discrete collision model.

Depending on the shim d and initial aperture h0
c best

simulation results are obtained with either γ(β1(h0
c )) or

γ(β2(h0
c )). In general, predictions with γ(β1(h0

c )) provides
qualitative good predictions for the first oscillation region
I, whereas predictions with γ(β2(h0

c )) results in qualita-
tively good estimations for the second oscillation region
II. With respect to the used shim d qualitat with γ(β2(h0

c )),
for shim d = 0.5 with γ(β2(h0

c )) and γ(β1(h0
c )) and for

shim d = 1.0 with γ(β1(h0
c )). Corresponding γ estimations,

for which an overview is given in Table VI, vary in the
range 0.25 < γ < 1.69 compared to γ = 0.5 for the fixed
‘ad-hoc’ value. Consequently, estimated coupling stiffness
range from 0.5 up to 3.38 times the fixed ‘ad-hoc’ value.
For coresponding estimations of the mass m.

The model outcome with the coupling parameter esti-
mated from measured values presents several satisfying
qualitative features with respect to the measured Pon val-
ues: 1) in terms of the retrieved two distinct oscillation re-
gions for small and large initial apertures respectively, 2)
in terms of the estimated variation of Pon with respect to
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Figure 12. Measured, shim d = 0.0 (◦ − ◦), d = 0.5 (4 − 4),
d = 1.0 (+ − +), and predicted threshold pressure Pon as a func-
tion of the initial aperture h0

c for different downstream resonators
of length L. Predictions are obtained with the coupling stiffness
derived from β1 (F for shim 0.5, × for shim 1.0 - black) and
β2 (� for shim 0.0, . for shim 0.5 - red). I and II indicate the
first (h0

c < 2.2 mm) and second (h0
c > 4 mm) oscillation region,

respectively. (a) L = 49.5 cm, (b) L = 28.6 cm, (c) L = 18.5 cm.

variation of mechanical properties for a given initial aper-
ture (so different shim d), 3) in terms of qualitative agree-
ment with the measured values and 4) no ‘ad-hoc’ assump-
tion is needed to determine the coupling stiffness.

Unlike the mentioned qualitative predictive qualities of
both the model outcome as the parameter extraction the
overall quantitative prediction is inaccurate as e.g. indi-
cated by the mean error which yields 30% in both oscilla-
tion regions. Even if this error range is large, it is smaller
than obtained in previous studies for which the coupling
stiffness is determined in an ‘ad-hoc’ way [21].

The need for different sets of model parameters to pre-
dict both oscillation regions suggest that several mechani-
cal modes are involved. The applied two-mass model can

9



un
co

rr
ec

te
d

ga
lle

y
pr

oo
fs

—
fo

ri
nt

er
na

lu
se

on
ly

ACTA ACUSTICA UNITED WITH ACUSTICA Cisonni et al.: Theoretical models of phonation
Vol. 97 (2011)

not account for more than two replica resonances at a same
time and is incapable of accounting for modes related to
three dimensional movement. Consequently, a more com-
plex mechanical model is of interest to avoid a change of
parameters or to account for three dimensional modes.

Conclusion

The presented experimental and modeling study deals with
the influence of initial geometrical, acoustical and me-
chanical conditions on the onset pressure threshold of vo-
cal folds self-sustained oscillation. The following conclu-
sions are made:
• Experimental observations of the onset pressure thresh-

olds and associated oscillation frequencies illustrate the
influence of the variation of initial conditions on the
self-sustained oscillation behaviour. Variation of initial
aperture and mechanical properties results in two oscil-
lation regions for which the difference in onset pressure
and resonance frequency yields 1000 Pa and 100 Hz, re-
spectively. In addition the importance of acoustical cou-
pling is apparent for the longest assessed pipe length of
49.5 cm for which the second oscillation regime is ab-
sent and the observed oscillation frequency matches the
pipes resonance frequency.

• Estimation of the coupling parameter required in the
two mass model from the measured frequency response
instead of imposing a fixed ‘ad-hoc’ value yields a
qualitative good agreement between predicted and mea-
sured oscillation onset pressures for the whole range
of assessed initial apertures and mechanical conditions.
The relevance of varying the coupling parameter is
shown since different values are used for estimation of
the onset pressure for different initial geometrical and
mechanical conditions. In addition, the same approach
is suitable to experimentally estimate the value of the
time-delay required in the delayed one-mass model.
Consequently, for the mechanical model portion only
the critical collision threshold is an ‘ad-hoc’ parameter.
Therefore, future modelling efforts involve improve-
ment of the discrete collision model in order to avoid
‘ad-hoc’ parameter tuning in case not only the oscilla-
tion onset is of interest.

• The used experimental replica is suitable to impose dif-
ferent initial apertures while maintaining mechanical
properties as in an abduction or adduction gesture in
human phonation. In addition, the mechanical proper-
ties of the replica are comparable to human vocal folds
with respect to 1) the presence of 2 or 3 mechanical
resonance frequencies and 2) the Young’s modulus of
the replica varies in the same range as measured ‘in-
vivo’. Furthermore, for a typical vocal tract length of
18 cm acoustical coupling is weak and its influence
can be neglected. The outlined experimental estima-
tion of the mechanical coupling parameter is interest-
ing for ‘in-vivo’ validation of the model with model
parameters determined from ‘in-vivo’ observations of
the prephonatory glottal aperture and mechanical prop-
erties.

Appendix

A1. Theoretical model and stability analy-
sis

The theoretical symmetrical two-mass model is schemat-
ically depicted in Figure A1. In the following the model
detailed in [3, 21] is briefly outlined and the parameter γ
is introduced. Next, the system equations resulting from a
linear stability analysis are derived.

A1.1. Flow model

The flow through the glottal constriction is described as-
suming a quasi-steady inviscid and incompressible flow
corrected for some viscous effects in case of small glot-
tal apertures and flow separation in the diverging portion
of the glottis as As(t) = 1.2 × min(A(x, t)). The pressure
distribution P (x, t) and volume flow rate Φ is written as:

P (x, t) = Pu −
1
2
ρΦ2

(

1
A2(x, t)

−
1

A2(x0)

)

(A1)

+ 12µw2Φ
∫x

x0

dx
A3(x, t)

, if x < xs,

P (x, t) = Pd, if x ≥ xs, (A2)

with w the uniform width of the glottal replica, µ the dy-
namic viscosity of air and ρ the density of air, so that

Φ =
[

12µw2Φ
∫x

x0

dx
A3(x, t)

+
{

(

12µw2Φ
∫x

x0

dx

A3(x, t)

)2

+ 2(Pu − Pd)ρ
(

1/A2
s − 1/A2(x0)

)

}1/2]

[

ρ
(

1/A2
s − 1/A2(x0)

)

]−1
. (A3)

A1.2. Mechanical model

Using the notations introduced in section 1, the mechani-
cal model is written as two coupled equations:

m

2
d2A1

dt2
+
R

2
dA1

dt
+
K(1 + γ)

2
A1 −

γK

2
A2

= F1(A1, A2, Pu, Pd), (A4)
m

2
d2A2

dt2
+
R

2
dA2

dt
+
K(1 + γ)

2
A2 −

γK

2
A1

= F2(A1, A2, Pu, Pd), (A5)

with F1,2 the force exerted by the fluid on the first and sec-
ond mass respectively. The mechanical equations at equi-
librium reduces to:

K(1 + γ)
2

Ā1 −
γK

2
Ā2 = F1(Ā1, Ā2, P̄u, P̄d = 0), (A6)

K(1 + γ)
2

Ā2 −
γK

2
Ā1 = F2(Ā1, Ā2, P̄u, P̄d = 0), (A7)

from which the equilibrium positions for a given upstream
pressure P̄u are derived by a fixed point method.

10



un
co

rr
ec

te
d

ga
lle

y
pr

oo
fs

—
fo

ri
nt

er
na

lu
se

on
ly

Cisonni et al.: Theoretical models of phonation ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 97 (2011)

Figure A1. Schematic representation of a symmetrical two mass
model [3, 21] introducing the parameter γ.

Assuming a small perturbation (a1, a2, pu, pd) of the
quantities around the equilibrium values eq = (Ā1, Ā2,
P̄u, P̄d = 0) as:

A1 = Ā1 + a1, A2 = Ā2 + a2, (A8)

Pu = P̄u + pu, Pd = P̄d + pd, (A9)

results in the following set of equations:

m

2
d2a1

dt2
+
R

2
da1

dt
+
K(1 + γ)

2
a1 −

γK

2
a2 (A10)

=
∂F1

∂A1

∣

∣

∣

eq
a1 +

∂F1

∂A2

∣

∣

∣

eq
a2 +

∂F1

∂Pu

∣

∣

∣

eq
pu +

∂F1

∂Pd

∣

∣

∣

eq
pd,

m

2
d2a2

dt2
+
R

2
da2

dt
+
K(1 + γ)

2
a2 −

γK

2
a1 (A11)

=
∂F2

∂A1

∣

∣

∣

eq
a1 +

∂F2

∂A2

∣

∣

∣

eq
a2 +

∂F2

∂Pu

∣

∣

∣

eq
pu +

∂F2

∂Pd

∣

∣

∣

eq
pd.

A1.3. Acoustic model

The acoustic set of equations is given as

d2ψd

d2t
+
ωd
Qd

dψd
dt

+ ω2
dψd =

Zdωd
Qd

φ, (A12)

d2ψu

d2t
+
ωu
Qd

dψu
dt

+ ω2
uψu = −

Zuωu
Qu

φ, (A13)

with ∂ψu,d/∂t = pu,d the acoustic pressure and φ the un-
steady portion of the volume flow velocity downstream the
vocal folds, ωu,d the acoustical resonance pulsation, Qu,d

the quality factor and Zu,d the peak value of the acousti-
cal impedance. As for the mechanical equations assuming
small variations around equilibrium results in

d2ψd
d2t

+
ωd
Qd

dψd
dt

+ ω2
dψd = (A14)

Zdωd
Qd

(

∂Φ
∂A1

∣

∣

∣

eq
a1 +

∂Φ
∂A2

∣

∣

∣

eq
a2 +

∂Φ
∂Pu

∣

∣

∣

eq
pu +

∂Φ
∂Pd

∣

∣

∣

eq
pd

)

,

d2ψu

d2t
+
ωu
Qd

dψu
dt

+ ω2
uψu = (A15)

−
Zuωu
Qu

(

∂Φ
∂A1

∣

∣

∣

eq
a1 +

∂Φ
∂A2

∣

∣

∣

eq
a2 +

∂Φ
∂Pu

∣

∣

∣

eq
pu +

∂Φ
∂Pd

∣

∣

∣

eq
pd

)

.

A1.4. Linear stability analysis

Consequently, assuming small variations around equilib-
rium results in a coupled set of equations obtained from
(A10), (A11), (A14) and (A15):

m
d2a1

dt2
+ R

da1

dt
− 2

∂F1

∂Pu

∣

∣

∣

eq

dψu
dt

−2
∂F1

∂Pd

∣

∣

∣

eq

dψd
dt

+
(

K(1 + γ) − 2
∂F1

∂A1

∣

∣

∣

eq

)

a1 (A16)

−
(

γK + 2
∂F1

∂A2

∣

∣

∣

eq

)

a2 = 0,

m
d2a2

dt2
+ R

da2

dt
− 2

∂F2

∂Pu

∣

∣

∣

eq

dψu
dt

−2
∂F2

∂Pd

∣

∣

∣

eq

dψd
dt
−
(

γK + 2
∂F2

∂A1

∣

∣

∣

eq

)

a1 (A17)

+
(

K(1 + γ) − 2
∂F2

∂A2

∣

∣

∣

eq

)

a2 = 0,

d2ψd

d2t
−
Zdωd
Qd

∂Φ
∂Pu

∣

∣

∣

eq

dψu
dt

+
(

ωd
Qd
−
Zdωd
Qd

∂Φ
∂Pd

∣

∣

∣

eq

)

dψd
dt

(A18)

−
Zdωd
Qd

∂Φ
∂A1

∣

∣

∣

eq
a1 −

Zdωd
Qd

∂Φ
∂A2

∣

∣

∣

eq
a2 + ω

2
dψd = 0,

d2ψu

d2t
+
(

ωu
Qd

+
Zuωu
Qu

∂Φ
∂Pu

∣

∣

∣

eq

)

dψu
dt

+
Zuωu
Qu

∂Φ
∂Pd

∣

∣

∣

eq

dψd
dt

+
Zuωu
Qu

∂Φ
∂A1

∣

∣

∣

eq
a1 (A19)

+
Zuωu
Qu

∂Φ
∂A2

∣

∣

∣

eq
a2 + ω2

uψu = 0.

The system can be expressed in state-space form as

Ẋ =MX (A20)

with X = [a1, a2, ψu, ψd, da1/dt, da2/dt, dψu/dt, dψd/dt]
and M defined as

M =

































0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−
K(1+γ)−2 ∂F1

dA1
|eq

m

γK+2 ∂F1
dA2
|eq

m 0 0
γK+2 ∂F2

dA1
|eq

m −
K(1+γ)−2 ∂F2

dA2
|eq

m 0 0
Zdωd
Qd

∂Φ
∂A1

∣

∣

∣

eq

Zdωd
Qd

∂Φ
∂A2

∣

∣

∣

eq
0 −ω2

d

−Zuωu
Qu

∂Φ
∂A1

∣

∣

∣

eq
−Zuωu

Qu

∂Φ
∂A2

∣

∣

∣

eq
−ω2

u 0

. . .

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−Rm 0 2

m
∂F1
∂Pu

∣

∣

eq
2
m
∂F1
∂Pd

∣

∣

eq

0 −Rm
2
m
∂F2
∂Pu

∣

∣

eq
2
m
∂F2
∂Pd

∣

∣

eq

0 0 Zdωd
Qd

∂Φ
∂Pu

∣

∣

∣

eq
−
(

ωd
Qd
− Zdωd

Qd

∂Φ
∂Pd

∣

∣

∣

eq

)

0 0 −
(

ωu
Qd

+ Zuωu
Qu

∂Φ
∂Pu

∣

∣

∣

eq

)

−Zuωu
Qu

∂Φ
∂Pd

∣

∣

∣

eq






























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For a known set of initial conditions the system will be-
come instable, corresponding to oscillation onset, in case
the real portion of an eigenvalue ofM is positive. The cor-
responding oscillation pulsation is obtained as the imagi-
nary portion of the eigenvalue.

Note that in the foregoing collision is detected following
the criterion hc = A/w < hcrit in which case the values of
K and R are increased to K = 4K and R = R + 2

√
Km.

The fixed collision threshold hcrit is set to 0.02 mm.
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