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Asymmetrical effects in a 2D stenosis
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Abstract

An integral Interacting Boundary Layer theory is presented for the steady laminar flow in a asymmetrical bidimensional channel
at high Reynolds number. The effect of asymmetry of the geometry is taken into account into the ideal fluid pressure expression. The
effect is small but noticeable. Comparison with a Navier–Stokes solution shows the trend of asymmetry: increasing the pressure
drop on the more curved wall, decreasing it on the other. Separation and reattachment of the boundary layer are obtained and
compare well.
© 2006 Elsevier Masson SAS. All rights reserved.

1. Introduction

Computing the flow in locally constricted pipe is important in numerous applications in biomechanics. Of course
this can be achieved with accuracy through Navier–Stokes solvers. For example, in local constrictions of blood vessels
(Berger and Jou [1], Siegel et al. [2]), in veins (collapsible tubes Luo and Pedley [3]) in aneurysms (or dilated tube,
Budwig et al. [4]), or in the upper airway (Shome et al. [5]). Here we will focus on steady laminar flows at high
Reynolds number that can be considered as bidimensional, but not symmetrical. A typical example is on Fig. 1. In
fact we will study a model example. Our aim is to present the simplest model for steady laminar pipe flow at large
Reynolds number and to observe the effect of asymmetry.

We will compare some NS (Navier Stokes) solutions to solutions of asymptotic equations because we think that
they provide a better understanding of the flow structure and relevant scalings. Using asymptotic equations, computa-
tional time is drastically reduced. Therefore, parameters may be changed easily and their influence can be thoroughly
investigated.

Most of such simplified previous studies considered symmetrical flows (Pelorson et al. [6], Lorthois et al. [7], La-
grée et al. [8], Lagrée et al. [9], de Bruin et al. [10] and Kalse et al. [11]). In [8] and [11] it was observed that integral
Interacting Boundary Layer and NS give very similar results. Predictive simplified formula for values of the skin
friction and for the pressure drop based on the boundary layer were presented in [7] and [8]. In [9], the links between
the “Triple Deck” theory and Interactive Boundary Layers in internal flows is presented. Furthermore [11] proposed
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part of the equations for a non-symmetrical channel but did not solved them. Hence, we present an asymptotic deriva-
tion of the effect of non-symmetry in the framework of the Interactive Boundary Layer theory (IBL). This theory is
presented in Cebeci and Cousteix [12] or Sychev et al. [13], as not complete in the asymptotical framework. But, they
point out that numerous results of calculations for different flows showed good agreement with experimental data in
the description of flow separation in aerodynamics. In Veldman [14] the IBL and its links with the “Triple Deck”
theory in open flows is explained. Some industrial examples comparing IBL and experiments are presented too.

Mainly, the descriptions of IBL use the length of the bump as fundamental scale (say L). The Reynolds number is
then constructed with this length (RL = U0L/ν, here we are in a 2D channel, h0 is the distance between the two plates,
and U0h0 is the flux). The boundary layer is then scaled by LR

−1/2
L , the displacement thickness is about 1.7LR

−1/2
L .

This length L must be smaller that the length of entry (say Le) which is such that the two boundary layers merge
between the plates: LeR

−1/2
Le

= h0. This length is Le = h0(U0h0/ν). The idea of the IBL theory is to couple the ideal
fluid flowing in the core to variations of the displacement thickness of the boundary layer. For example, before the
constriction, where the walls are flats, it means that the ideal fluid in the pipe experiments no more the section h0 but
a smaller section reduced by twice 1.7LR

−1/2
L . So the flow is accelerated. In “classical boundary layer theory” it is

impossible: the Reynolds is infinite (R−1/2
L = 0). The entry length is reject at infinity. This boundary layer effect is an

order two effect (Van Dyke [15]), the velocity remains U0. But in “IBL theory” this is possible. It means that R
−1/2
L

is small but not so much. Hence, effect of second order and first order are mixed: the boundary layer retroacts on the
ideal fluid. This was the paradox of IBL.

But, recently, Dechaume et al. [16] (and Cousteix and Mauss [17] and [18]) established on rational basis the
IBL equations. They break the paradox. They use a “modified Van-Dyke” principle and “successive complementary
expansion method”. The existence of a small parameter in the equation is then no more a problem. The link with
“Triple Deck” theory is done as well. They show that with this technique the IBL equations are fully justified.

Here, as we are in pipe, we prefer to use h0 to construct the Reynolds (Re = U0h0/ν) and to scale the boundary
layer. So to have a small boundary layer as just mentioned, we have to be near the entrance of the pipe at a distance
smaller than Le = h0(U0h0/ν) (so that we are before the merging of the boundary layers). Compared to the previous
approach where we gave L, it is just a change of scale of the boundary layer equations. This length must be larger
than the distance between the plates in order to do the expansion in the ideal fluid. But we will observe that the system
is very robust and may be used even if the width of the bump is h0. One reason of this robustness is that the flow is
accelerated, so that the boundary layer is thinner. The other one belongs to magic of asymptotic expansion which give
often good results even if the small parameter is not so small (Van Dyke [15]).

First we present the problem and the basic scales for the NS problem. Then we introduce a simplified set of
equations: Reduced Navier–Stokes. The integral IBL system is introduced thereafter. A comparison between the three
models shows that the integral IBL catches most of flow features (with a very short computational time, about 500
times less).

2. Equations

2.1. Navier Stokes

We solve the Newtonian steady laminar incompressible bidimensional Navier Stokes equations with the numerical
code Castem 2000 [19]. The geometry consists in a straight channel with a bump on one wall (Fig. 1), we used the
channel height h0 to non-dimensionalise the scales of x∗ and y∗. A Poiseuille velocity (of total flux U0h0 equal to 1 in
non-dimensional scales) is imposed at the entrance, a zero stress is imposed at exit. The exit and the entrance are far
enough from the stenosis to avoid their influences. We present (on Figs. 1–5) only results for Re = 500 (Re = U0h0/ν).
Increasing the Reynolds increases the number of points and the computational time. It creates problems at the output
where the jet may oscillate. But we do not focus here on the NS problem.

2.2. Reduced Navier Stokes

We now present two simplifications of the NS equations issued from boundary layer theory (Schlichting [20], Sy-
chev et al. [13], Rubin and Tannehill [21]). The first simplification consists in neglecting the transverse variation of
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Fig. 1. A zoom of the channel with its stenose. The constriction is a smoothed ellipsis (the lower wall is fb , the upper is here flat, fh = 0). The
transverse scale is adimensionalised by the unperturbed channel width h0. Here, the entry profile is a Poiseuille profile (u = UPois = y(1 − y) and
v = 0), but any other is possible. The NS computational domain is larger to avoid entrance and output effects, iso pressure (gray scale) and the
mesh (white grid) are plotted.

pressure. This leads to a system we call RNSP (Reduced Navier Stokes/Prandtl) because this is a reduced system ob-
tained from Navier Stokes and because this is in fact the Prandtl partial differential equations (with different boundary
condition than in the classical boundary layer theory). It has been shown that this system is a good approximation of
NS in symmetrical stenoses (Lagrée et al. [8]) and that its axisymmetrical version (Lagrée and Lorthois [9]) includes
most of IBL/Triple Deck/Double Deck asymptotical regimes. These equations are obtained from NS by supposing that
the transverse scale is smaller than the longitudinal one and that the Reynolds number is large. To settle the equations,
u∗ is scaled by U0, v∗ by U0/Re, x∗ by h0Re, y∗ by h0 and p∗ by ρU2

0 . The flow is supposed quasistatic: Strouhal
number is low, in fact the spatial acceleration is large. The system is:

∂

∂x
u + ∂

∂y
v = 0, u

∂

∂x
u + v

∂

∂y
u = − ∂

∂x
p + ∂2

∂y2
u, 0 = − ∂

∂y
p. (1)

The boundary conditions are no slip u(x, y = fb(x)) = 0, v(x, y = fb(x)) = 0 at the lower wall defined by fb(x)

(whose dimension is h0) and at the upper wall u(x, y = 1 − fh(x)) = v(x, y = 1 − fh(x)) = 0. At the entrance,
pressure is zero, the first velocity profile is given (for example a flat profile u = 1, v = 0, or Poiseuille).

We note the invariance by Prandtl transform (yp = y − fb(x)) that allows to solve the problem from yp = 0 to
yp = 1 − fh(x) − fb(x).

We note that there are two transverse boundary conditions (u(x, y = fb(x)) = 0 and u(x, y = 1 − fh(x)) but there
is no outflow boundary condition (only u = 1 is given at the entrance). This is because the system is parabolic in x

(u∂xu � ∂2
yu). The Navier Stokes equations must have an output condition, which is not the case here.

2.3. IBL

2.3.1. Ideal fluid
Previous studies used mainly a symmetrical approximation, so that ideal fluid pressure or ideal fluid velocity was

a function of the longitudinal variable alone. We want to introduce a small effect of transverse variation of pressure.
Then we will couple the ideal fluid with the two boundary layers.

We solve linearised Euler equations in a channel with a slowly varying indentation with (ξ = εx∗/h0, y = y∗/h0).
Thereafter ξ will be identified with x. In practice, we will discuss the flow with a flat upper wall (yh = 1 or fh = 0),
with an indentation at the lower wall (yb = fb). The maximum value of fb is α the degree of stenosis, the indentation
may be severe, it means that α may be close to 1. Expanding as:

u = U0(ξ) + εu1(ξ, y) + ε2u2(ξ, y) + · · · , (2)

v = εv1(ξ, y) + ε3v3(ξ, y) + · · · , (3)

p = p0(ξ) + εp1(ξ, y) + ε2p2(ξ, y) + · · · , (4)

so that Euler system (we note that the perturbations u1 and p1 are zero) is at order 0 and 1:

U0
∂U0 = −∂p0

, (5)

∂ξ ∂ξ
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and

ε
∂U0

∂ξ
+ ε

∂v1

∂y
= 0. (6)

(The flow was supposed irrotational ∂yU0 − O(ε2) = 0). Writing the no slip condition on the upper and lower walls
(resp. yh and yb):

v1(ξ, yb = fh) = U0
∂fb

∂ξ
, v1(ξ, yh = 1 − fh) = −U0

∂fh

∂ξ
,

we integrate twice the continuity equation (6) to obtain the classical expression of U0 and by the momentum equa-
tion (5) we obtain P0:

U0(ξ) = 1

1 − fb(ξ) − fh(ξ)
, P0(x) = 1

2
− 1

2

(
1

1 − fb(ξ) − fh(ξ)

)2

. (7)

The expression for transverse velocity follows:

v1(ξ, y) = U0
∂fb

∂ξ
+ y − fb

1 − fh − fb

(
−U0

∂fb

∂ξ
− U0

∂fh

∂ξ

)
. (8)

The next order is:

ε2U0
∂v1

∂ξ
= −ε2 ∂p2

∂y
, (9)

ε3 ∂U0u2

∂ξ
= −ε3 ∂p2

∂ξ
, (10)

ε3 ∂u2

∂ξ
+ ε3 ∂v3

∂y
= 0. (11)

From the integration by y of the incompressibility at order 0 and 2, we obtain that ∂ξ (
∫ yh

yb
(U0 + ε2u2)dy) = 0, once

developed using (8) and from Euler equation (10) we then obtain
∫ yh

yb
p2 dy = 0. After some algebra, from (9) and (8),

we find the pressure value at order 2 on the lower wall:

p2(ξ, fb) = −4f ′
b(ξ)

2 − 2f ′
b(ξ)f ′

h(ξ) + 2f ′
h(ξ)

2

6 (−1 + fb(ξ) + fh(ξ))
+ (−1 + fb(ξ) + fh(ξ))(2f ′′

b (ξ) − f ′′
h (ξ))

6(−1 + fb(ξ) + fh(ξ))
, (12)

and the pressure value at order 2 at the upper wall:

p2(ξ,1 − fh) = −(−2f ′
b(ξ)

2 + 2f ′
b(ξ)f ′

h(ξ) + 4f ′
h(ξ)

2
)

6(−1 + fb(ξ) + fh(ξ))
+ (−1 + fb(ξ) + fh(ξ))(f ′′

b (ξ) − 2f ′′
h (ξ))

6(−1 + fb(ξ) + fh(ξ))
. (13)

We define the total transverse pressure drop as ε2(p2(ξ, yh) − p2(ξ, yb)), which is a bit more simple:

ε2(p2(ξ, yh) − p2(ξ, yb)
) = ε2

(
(f ′

h(ξ)
2 − f ′

b(ξ)
2
)

1 − fb(ξ) − fh(ξ)
+ (f ′′

h (ξ) − f ′′
b (ξ))

2

)
. (14)

Of course, a symmetrical channel (fb = fh) gives �P0 = 0, in practice we will use fh = 0. We note that Kalse et
al. [11] derived with more severe approximations this same pressure drop (but not (12) nor (13)). Here the result
comes only from the hypothesis.

2.3.2. Boundary layer
Up to now in this section, we supposed that the fluid was ideal. Here we introduce the Boundary Layer equations

which may be deduced from Navier Stokes supposing that the Reynolds number is large and that viscous effects are
restricted to two thin layers near the walls (see Fig. 2). We simplify much more the boundary layer in using the integral
Kármán equation [20,22]. We define δb

1 and δh
1 the displacement thicknesses at the lower and the upper walls. The

choice of the scaling comes here from the RNSP case, x is scaled by h0Re and δ
b,h
1 by h0, in fact the boundary layer

will be small at those scales (see Lagrée and Lorthois [9]). This slow variation in x allows to identify Re−1 and ε.
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Fig. 2. A larger zoom of the channel (here a RNSP computation at Re = 500) with the stenose and the upper flat wall. The two upper and lower
boundary layers and the ideal fluid appear from the computation. The interaction between the ideal fluid and the boundary layers is the core of the
Interactive Boundary Layer theory.

So, this gives the following system where the ideal fluid (computed in the preceding section) promotes the boundary
layer. We have two boundary layers, one at the top:

d

dx

(
δh

1

H

)
+ δh

1

uh
e

(
1 + 2

H

)
duh

e

dx
= f2H

δh
1 uh

e

, δh
1 = F

(
uh

e

)
, (15)

and another at the bottom:

d

dx

(
δb

1

H

)
+ δb

1

ub
e

(
1 + 2

H

)
dub

e

dx
= f2H

δb
1ub

e

, δb
1 = F

(
ub

e

)
. (16)

Initial condition is for example δ
h,b
1 (0) = 0 and u

h,b
e (0) = 1. In the classical approach, δ1 is obtained through the

knowledge of ue, which we write formally δ
b,h
1 = F(u

b,h
e ). To solve these boundary layer equations, a closure re-

lationship linking H and f2 to the velocity and the displacement thickness is needed. This is of course a strong
hypothesis. Defining Λ1 = δ2

1
due

dx
, (of course it is δb

1 , ub
e or δh

1 , uh
e ) the system is closed from the resolution of the

Falkner Skan system as follows:

H =
{

2.5905 e−0.37098Λ1 if Λ1 < 0.6
2.074 if Λ1 > 0.6

, f2 = 1.05
(−H−1 + 4H−2).

It means that we suppose that each profile remains a Falkner Skan one in the boundary layer.
This closure allows flow separation for decelerated flows, we will see in the next section that one has to solve these

equations ((15) and (16)) in an “inverse way” (ub,h
e = F−1(δ

b,h
1 )) to compute flow separation.

Those simplifications are in the spirit of Lorthois et al. [7], but here in 2D. Recently, Kalse et al. [11] used nearly
the same modelisation.

2.3.3. Integral IBL
The Integral Boundary Layer equations (IBL) suppose that the wall is no more at the bottom yb = fb and at the

channel height yh = 1 − fh but it is changed by the amount of the displacement boundary layer thickness δh
1 at the

upper wall and δb
1 at the lower wall. That is why we scaled δ

b,h
1 by h0 and why we identified ε to be Re−1 and x = ξ .

This gives a coupled system where the ideal fluid promotes the boundary layer: (15) and (16) that, in growing,
retroacts (with the help of the concept of displacement thickness) on the ideal fluid through the flux conservation. The
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mean velocity (7) is no more (1 − fb(x)− fh(x))−1 but is now (1 − (fb(x)+ δb
1(x))− (fh(x)+ δh

1 (x)))−1. The ideal
fluid relation is now:

P0(x) = 1

2
− 1

2

(
1

1 − (fb(x) + δb
1(x)) − (fh(x) + δh

1 (x))

)2

. (17)

Using IBL idea (where first and second order are mixed), we say that the pressure are in fact pb = P0(x) +
ε2pb(x, yb = 1 − (fb + δb

1)) and ph = P0(x) + ε2ph(x, yh = fh + δh
1 ). The pressure at the bottom (pb(x, yb =

fb + δb
1)) is (12) with fb changed by fb + δb

1 ; the same for ph(x, yh = 1 − (fh + δh
1 )) which is (13) with fh changed

by fh + δh
1 . As the expressions for pb(x, yb = fh + δh

1 ) and ph(x, yh = fh + δh
1 ) are a bit complicated, we just write

their difference ph − pb = �P0:

�P0 = ε2
(

((f ′
h + δ′h

1 )
2 − (f ′

b + δ′b
1 )

2
)

1 − (fb + δb
1) − (fh + δh

1 )
+ (f ′′

h + δ′′h
1 − f ′′

b − δ′′b
1 )

2

)
. (18)

Note that we recover a result that looks like Smith [23] (or Sobey [24]) result in pipe flow, the transversal pertur-
bation of pressure in a perturbed Poiseuille flow is ph − pb = A′′/30 where −A is a displacement of the stream lines
as δb

1 − δh
1 is. Of course the two configurations are very different.

We note that this coupling relation produces upstream influence, it means that before the bump, the flow “knows”
that it is coming. This creates solutions in ekx with k > 0, we see it on the numerical solutions.

2.3.4. Numerical resolution of the Integral IBL
We solve the interactive system by a semi inverse method (Le Balleur [25]). This means that the boundary layer

is solved in an inverse way (the displacement thickness is imposed and the velocity is a result of the computation).
This inverse way allows to compute flow separation (the direct way would lead to a singularity at separation). The
ideal fluid is computed in “direct way” from the geometry changed by the amount of the boundary layer displacement
thickness.

At iteration n, we have a set of two displacement boundary layer thickness (δb
1)n and (δh

1 )n. They give, by solving in
an inverse way (15) and (16), two associated boundary layer velocities: (uh

e )
n = F−1((δh

1 )n) and (ub
e)

n = F−1((δb
1)n).

The two corresponding pressures in the boundary layers (ph
e )n and (pb

e )
n are computed from these velocities, i.e.

Bernoulli:(
p(b,h)

e

)n = 1

2

(
1 − ((

u(b,h)
e

)n)2)
. (19)

From the expressions of ph(x, yh = fb + δb
1)) and pb(x, yb = fb + δb

1)) (defined before Eq. (18)), the ideal fluid
pressures are computed. A new boundary condition associated to the second derivative must be used. At the output
∂ph

∂x
= 0 and ∂pb

∂x
= 0 are imposed.

Fig. 3. A chart of the iterative “semi inverse” interaction: the two boundary layers are solved in an inverse way. The correction of boundary layer
thickness is proportional to the difference of pressure.
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Fig. 4. Comparison of RNSP and NS pressures, RNSP solution is an approximation of the two NS pressures. The geometry is plotted as well.

The semi inverse relaxation is done as follows (Fig. 3):
(
δh

1

)n+1 = (
δh

1

)n + λ
((

ph
)n − (

ph
e

)n) (20)(
δb

1

)n+1 = (
δb

1

)n + λ
((

pb
)n − (

pb
e

)n)
. (21)

The relaxation parameter λ is chosen by trial and error in order to obtain convergence. In order to obtain estimate of
λ the theory proposed by Le Balleur [25] is relevant.

3. Some numerical comparisons

We compare then the NS results to the RNSP and IBL results. We suppose that the upper wall is flat fh = 0, and
that the lower wall is a given function of x∗, for example the following function is close to half a circle:

ζ = x∗ − x∗
c

4αh0/3
, fb(ζ ) = 1 − ζ 2

2
− ζ 4

8
− ζ 6

16
+ 1445ζ 8

13122
− 1385ζ 10

59049
,

which is nearly
√

1 − ζ 2 around ζ = 0 up to order ζ 8. Notice that on every figure we used the physical longitudinal
scale (h0) to plot the curves; numerically in (1) and (15), (16), the width of the bump is of order (1/Re) in our scales.

The first curves show the pressure (Fig. 4) and the skin friction (Fig. 5) computed by RNSP and NS. We see that the
pressure p(x) from RNSP is an approximation of the mean NS pressure. The NS pressure displays a larger drop just
after the throat on the curved wall and a smaller pressure drop on the flat wall. The recompression is over predicted
by RNSP. In the symmetrical cases [9] the difference was smaller.

The RNSP skin friction overall distribution looks like the NS one. There is a kink in the skin friction at the flat wall
which does not exist in NS because of the smoother pressure gradient on the flat wall.

The next curves show the pressure (Fig. 6) and the skin friction (Fig. 7) computed by integral IBL and NS. They
show “upstream influence”, the upstream part of the flow is influenced by the downstream part. On the pressure
curve, before the throat, the upstream influence of the bump is to produce an over pressure drop on the curved wall.
This upstream influence comes from the order two derivative in the transverse pressure relation (Eq. (18)), it has an
exponential behaviour (ekx with k > 0). This influence is responsible for the incipient separation before the bump,
increasing α leads to flow separation before the bump. This upstream influence is due to the curvature of the stream
line. It does not exist in the symmetrical case.

The integral IBL skin friction looks like the NS one, but it is overestimated by the IBL (results from integral IBL
will never be perfect because there is a strong closure hypothesis). The integral IBL well predicts the position of
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Fig. 5. Comparison of RNSP and NS wall shear stress. The flat wall shear stress is over predicted by RNSP at the maximum, but in the wake
(x∗/h0 > 1) it is better.

Fig. 6. Comparison of integral IBL and NS pressures. The IBL approach well predicts the over pressure on the flat wall and the positions of the
minima of the pressures after the throat.

the point of separation but overpredicts the negative skin friction. The incipient separation before the bump is well
predicted and is related to the upstream influence.

The displacement functions δb
1 and δh

1 (IBL flat) are plotted on figure (Fig. 8). A large value of the displacement
thickness is associated to a deceleration of the flow and eventually to boundary layer separation. A thin value is
associated to the large acceleration at the throat. The difference of pressure ph − pb is plotted too. As this difference
of pressure has scale Re−2 the effect of asymmetry becomes smaller with larger Re.

The integral IBL gives good trends in the influence of asymmetry, its main advantage is that it is a extremely
quick method compared to full Navier Stokes which is time and memory consuming. For example, using a Linux
x86 workstation at 3.0 GHz we may roughly compare the three methods. Navier Stokes solver CASTEM takes about
15 minutes to compute the flow (200 times 16 nodes) for a maximal error of 10−5 between two iterations. RNSP
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Fig. 7. Skin friction, comparison of integral IBL and NS. The integral IBL over predicts the maximum of skin friction but well predicts the position
of the point of separation. The incipient separation before the bump is well predicted.

Fig. 8. Left: the displacement functions δb
1 (IBL bump) and δh

1 (IBL flat). A large value of δ1 is associated to boundary layer separation. A thin

value is associated to the large acceleration at the throat. Right: the difference of pressure ph −pb is plotted, the “final effective” channel is plotted:
1 − δh

1 and fb + δb
1 ; the jet due to separation is visible.

solver takes 2 seconds to compute the flow (on a very fine mesh 3000 times 1000). Finally, the integral IBL solves
a symmetrical case in less than 0.5 second; it needs 2 more seconds to obtain a maximal error of 10−5 between two
iterations in the non-symmetrical case (in about 800 iterations). Those figure are indicative, faster NS solvers may
exist, and our code is not optimised.

Increasing the Reynolds number will disadvantage the Navier Stokes computation: the IBL remains always precise,
but the NS mesh has to be refined.

4. Conclusion

We have presented here a simplified model issued from asymptotic analysis. The expressions of the pressure at the
upper and lower wall were presented. The effect of asymmetry is an order two effect. The integral Boundary Layer
equations are solved together with the ideal fluid equations thanks to Interactive Boundary Layer Theory.

A symmetrical pipe has no upstream influence, it means that changing the downstream conditions does not change
the flow upstream. This is broken by the asymmetry. Concerning the pressure, the effect of asymmetry is to increase
the pressure drop at the curved bottom wall and to lower the pressure at the flat upper wall. The smallest pressure is
on the curved wall, the minimum pressure on the bottom wall is more upstream that the pressure minimum on the top
wall. The two minima are after the throat. A massive separation appears after the throat on the curved wall, a small
separation appears before the throat on the curved wall, no separation occurs at the flat wall. The effect of downstream
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on upstream that is not present in the RNSP theory is a pure effect of the wall and displacement curvature. This effect
creates an increase of pressure on the lower wall which is responsible for the upstream flow separation.

Solving the equations of IBL theory is very fast (from factor 2000 in the symmetrical case to a factor 500 in the
non-symmetrical case), so we plan to use it in biomechanical fluid structure interactions such like the Obstructive
Sleep Apnea syndrome.
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