Validation of theoretical models of phonation threshold pressure

with data from a vocal fold mechanical replica (L)
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This paper analyzes the capability of a mucosal wave model of the vocal fold to predict values of
phonation threshold lung pressure. Equations derived from the model are fitted to pressure data
collected from a mechanical replica of the vocal folds. The results show that a recent extension of
the model to include an arbitrary delay of the mucosal wave in its travel along the glottal channel
provides a better approximation to the data than the original version of the model, which assumed
a small delay. They also show that modeling the vocal tract as a simple inertive load, as has been
proposed in recent analytical studies of phonation, fails to capture the effect of the vocal tract on the
phonation threshold pressure with reasonable accuracy.
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PACS number(s): 43.70.Aj, 43.70.Bk, 43.70.Jt [CHS]

I. INTRODUCTION

The phonation threshold of lung pressure is defined as
the minimum value required to initiate vocal fold oscillation.
It is an important factor for building empirical laws of laryn-
geal aerodynamics (Titze, 1992) and represents the pressure
level at which the energy transferred from the airflow to the
vocal folds is large enough to overcome the energy dissi-
pated in the tissues, so that an oscillatory movement of grow-
ing amplitude may take place (Lucero, 1999). The phonation
threshold pressure value has also been interpreted as a mea-
sure of ease of phonation and proposed as a diagnostic tool
for vocal health (Titze et al., 1995).

Two decades ago, Titze (1988) derived an equation for
the phonation threshold pressure by modeling the vocal fold
oscillatory movement as a superficial mucosal wave propa-
gating in the direction of the airflow. The equation related the
threshold pressure to biomechanical parameters, namely,
glottal geometry, tissue damping coefficient, and mucosal
wave velocity. However, it lacked the oscillation frequency
as an explicit parameter. It is well known that phonation
threshold pressure increases with frequency, as demonstrated
by experimental measures (e.g., Titze, 1992). In his works,
Titze (1988, 1992) pointed out the missing parameter and
offered a possible solution by relating the vocal fold thick-
ness and mucosal wave velocity to the oscillation frequency.

In a recent paper (Lucero and Koenig, 2007), it was
shown that the lack of the frequency factor is a consequence
of one of the simplifications made in the vocal fold model:
the assumption of a small time delay for the mucosal wave to
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travel along the vertical dimension of the vocal folds. A more
general analysis for an arbitrary time delay results in an ex-
tended equation for the phonation threshold pressure, which
includes the oscillation frequency explicitly.

Because a direct validation, using in vivo measurements
on human speakers, of these theoretical predictions cannot be
achieved easily, we propose to test them against in vitro ex-
periments using a mechanical replica of the vocal folds. Me-
chanical replicas of the voice production system, such as the
one introduced by Ruty er al. (2007), allow us to test theo-
retical models against experimental data quantitatively and to
extract conclusions about the range of validity of those mod-
els.

Il. EXTENSION OF THE MUCOSAL WAVE MODEL

Figure 1 shows a schematic of the mucosal wave model.
Complete right-left symmetry of the folds is assumed, and
motion of tissues is allowed only in the horizontal direction.
A surface wave propagates through the superficial tissues, in
the direction of the airflow (upward).

The equation of motion of the vocal fold tissues is ob-
tained by lumping their biomechanical properties at the mid-
point of the glottis and assuming that they are forced by the
mean glottal pressure P,, which yields

Mé+BéE+KéE=P,, 1)

where £ is the tissue displacement at the midpoint, and M, B,
K, are the mass, damping, and stiffness, respectively, per unit
area of the medial surface of the vocal folds.

The glottal aerodynamics is modeled by assuming that
the flow is frictionless, stationary, and incompressible. Fur-
ther, we assume that the subglottal pressure is equal to a
constant lung pressure P;, the vocal tract input area is much
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FIG. 1. Vocal fold model (after Titze, 1988).

larger than the glottal area, and the prephonatory glottal
channel is rectangular. Under such conditions, the mean glot-
tal air pressure P, may be expressed as

P,=Pi+ (P - P)(1 - aya))lk, (2)

where P; is the supraglottal pressure (at the entry of the vocal
tract), k, is a transglottal pressure coefficient, and a,, a, are
the glottal areas at the lower and upper edges of the glottal
channel, respectively, given by

a,(t) =2L[& + &t + 7)], 3)

ay(t) =2L[ & + &(t - 7)], (4)

where &, is the prephonatory glottal half-width, 7is the time
delay for the mucosal wave to travel half the glottal height
(T/2 in Fig. 1), and L is the vocal fold length.

Following Chan and Titze (2006), the input pressure to
the vocal tract is modeled as P;=[u, where I is the vocal
tract inertance and u is the time derivative of the airflow.
This approximation is valid when the oscillation frequency
of the vocal folds (F;) is below the first formant (F,) of the
vocal tract (Titze, 1988). For a quasisteady flow condition
and small amplitude oscillations around an abducted (open)
glottis, the flow derivative may be approximated by u
=~ U,d,, Where v,=+2P;/(k,p) is the air particle velocity at
the glottal exit, p is the air density, and a, is the glottal area
at the upper edge of the vocal folds, given by Eq. (4). There-
fore, we have the approximation

Pi=2LIU2§I(t—T), (5)

where &' (t—71)=d&/d(t-1).
With the above assumptions, the mean glottal air pres-
sure is then

P, —2LIv,E' (t— 7
Pg=2LIv2§’(t—T)+{ L £ )]
ky
t+7) - &t—
X[s( - & r)] ©
S+ &t+7)

The equation of motion for the vocal fold oscillation is
then given by Egs. (1) and (6). More details on the assump-
tions of the model and the derivation of the equations may be
easily found in the cited references.
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lll. OSCILLATION THRESHOLD PRESSURE

Equations (1) and (6) constitute a functional differential
equation with advance and delay arguments (f+7 and -7,
respectively). It has a unique fixed point at £=0, which cor-
responds to the prephonatory position.

Linearization around that position produces

ME+BE+ KE=2LIv,&' (1 - 7) + gp—z[g(w 7 —&r-D].
0t

(7)

Proposing a solution of the form &(r)=Ce, where C and \
are complex constants, and seeking nonzero solutions pro-
duces the associated characteristic equation

MN?+ B\ + K —2LIv,\e™ " — 2Py sinh(A7) =0. (8)
ki&o

Let Py, denote the phonation threshold value of the lung
pressure P;, at which the vocal fold oscillation starts. At the
threshold, a pair of complex roots of the above equation
cross the imaginary axis from left to right. Next, letting A\
=iw, P;=Py, and separating real and imaginary parts, we
obtain the conditions

- w*M + K - 2LIv,w sin(w7) =0, 9)

2P
wB - 2LIv,0 cos(wT) — k—;’ sin(w7) =0, (10)
1S0

and, from Eq. (10), we obtain

kigoBo

=—= - k&llv,o cot(wT), (11)
2 sin(w7)

th

where 0 < (w7) <1, and v, is computed at the threshold con-
dition, i.e., vy=+2Py/ (k,;p).

If we ignore the effect of the vocal tract by setting /
=0 (no vocal tract load), we obtain

ktgon
p, = —soBe 12
) sin(w7) (12)
which is the equation found by Lucero and Koenig (2007).
For 7—0, sin(w7)— 7. Eq. (12) simplifies further to
Titze’s (1988) result

_ ké&B

th= .
27

(13)
Note also that a Taylor expansion of Eq. (12) around

=0 produces

_ kB
n="

<l+zw2+(9(w4)). (14)
T 6
Keeping only the first two terms, we obtain a quadratic ap-
proximation to Py in terms of w, as proposed by Titze
(1992).

Considering now 7—0 in Eq. (11), and therefore
sin (w7) — w7 and cot (w7) — 1/(w7), we obtain
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_ k.&\B _ k&LIv,

27 T (15)

th

which is the equation found by Chan and Titze (2006).

IV. DATA

To test the above results, we used data collected from a
mechanical replica for a previous study by Ruty et al. (2007,
Figs. 8, 9 and 10 of their paper). The replica consists of two
metal half-cylinders covered with latex, which mimic the
vocal fold structure in a 3:1 scale, with a similar aspect ratio.
Geometrical dimensions and other parameters of the replica
were chosen in order to match as closely as possible the
glottal aerodynamics (see Table I of Ruty er al., 2007). The
cylinders are filled with water, at a controlled internal pres-
sure P.. The initial separation between the latex tubes de-
creases when P, is increased, and becomes zero for P,
>5000 Pa. The vocal tract is simulated with a downstream
cylindrical resonator. Two different tubes were used, with a
diameter of 25 mm, and lengths of 250 mm and 500 mm,
respectively. Their dimensions were chosen in order to
present a weak and a strong acoustical coupling. The first
acoustical resonances of the tubes are 340 Hz, for the
250 mm tube, and 170 Hz, for the 500 mm tube. Those reso-
nance frequencies are, respectively, higher than and compa-
rable to the oscillation frequency of the latex structure,
which is in the range of 110—170 Hz.

Measures of oscillation threshold pressure were obtained
by increasing the air pressure upstream of the vocal fold
replica until an oscillation of the latex structures was de-
tected. The oscillation frequency at the oscillation onset was
then computed by spectral analysis on the acoustic output
signal. A threshold pressure for the oscillation offset was also
measured, by decreasing the upstream pressure until the os-
cillation was interrupted, but those values are not used here.
This procedure was repeated for various values of the water
pressure P, and for the two cylindrical resonators.

For our analysis, we ignored all data for P.>5000 Pa,
because in that range the latex tubes are in contact (&,=0),
and consequently the above equations produce Py, =0. Let us
also recall that the mucosal wave model assumes an open
prephonatory glottis, wide enough so that the effect of air
viscosity may be neglected (Titze, 1988).

V. NUMERICAL RESULTS

We fitted the above theoretical equations to Ruty et al.’s
(2007) data by a standard least squares procedure imple-
mented in Matlab, with the oscillation threshold pressure P,
as the target.

In a first numerical experiment, we fitted Eq. (12) to
each resonator’s data, with (k,B) and 7 as parameters; the
results are shown in Fig. 2. The computed optimal values
were  (k,B)=350.81 Pas/m, 7=2.66ms, and (kB)
=1864.0 Pas/m, 7=2.90 ms for the 250 and 500 mm reso-
nators, respectively. For comparison, we also fitted Eq. (13),
obtaining (k,B)=3436.4 Pas/m, 7=7.12ms, and (kB)
=248.68 Pas/m, 7=0.0962 ms for the 250 and 500 mm
resonators, respectively. As shown by the plots, our extended
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FIG. 2. Oscillation threshold pressure Py, and frequency F, vs internal pres-
sure P, for a 250 mm resonator (upper panel) and 500 mm resonator (lower
panel). Circles: measured pressure values; triangles: theoretical pressure val-
ues given by Eq. (12), stars: theoretical pressure values given by Eq. (13);
filled circles: measured oscillation frequency. The broken line in the lower
panel indicates the first acoustical resonance (F;) of the resonator.

equation (12) provides a reasonably good approximation for
both resonators, better than Eq. (13). In case of the 250 mm
resonator, Eq. (13) produces a decreasing Py, pattern, instead
of the measured increasing pattern, because &, decreases
when P, increases (Ruty er al., 2007, Fig. 8). The extended
Eq. (12), on the other hand, is able to compensate for the
decrease in &, by the increase of oscillation frequency F at
larger values of P..

In the case of the 500 mm resonator, the plot also shows
the location of the first acoustical resonance F, at 170 Hz
(for the 250 mm resonator, ;=340 Hz falls outside the fre-
quency range of the plot). Note that the oscillation frequency
Fy is close to Fy, particularly at large values of P,, and
therefore the pure inertance approximation for the vocal tract
load does not hold.

In a second numerical experiment, we fitted Eqs. (11)
and (15) to both 250 and 500 mm resonator data sets simul-
taneously, with k,, B, and 7 as parameters, to see how well
they capture the vocal tract effect (Fig. 3). We set L
=45 mm (from Ruty et al., 2007) and p=1.14 kg/m? (from
Chan and Titze, 2006). Also, the range of possible values for
the transglottal coefficient k, was limited to [1.0, 1.4] (Titze,
1988). The vocal tract inertance was computed as I=pl/A,
where [ is the length and A is the cross sectional area. For the
250 and 500 mm resonators, we have 7=580.60 kg/m* and
1=1161.2 kg/m*, respectively. The computed optimal pa-
rameters were k,=1.40, B=783.95 Pas/m, 7=1.37 ms, for
Eq. (11), and k,=1.04, B=1363.3 Pas/m, 7=4.83
X 1077 ms, for Eq. (15).

In this experiment, the results for the 250 mm resonator
are similar to those in Fig. 2: the extended Eq. (11) provides
a good approximation, better than Eq. (15). Equation (15)
does not predict the observed increase of Py with P,.. The
best approximation it can produce is by setting a very small

Lucero et al.: Letters to the Editor



800 200
600 150
= —~
o N
= 400 100 T
< S
200 50
0 250 mm 0
0 500 1000 1500 2000 2500
P, (Pa)
800 200
”””””” L T
600 . et 150
L]
s b o <
€ 400 °© o o qi0Z
Ql 000X I’.f
200 50
Y500 mm ¥ v 3 0
3500 4000 4500 5000
P, (Pa)

FIG. 3. Oscillation threshold pressure Py, and frequency F| vs internal pres-
sure P, for a 250 mm resonator (upper panel) and 500 mm resonator (lower
panel). Circles: measured pressure values; triangles: theoretical pressure val-
ues given by Eq. (11), stars: theoretical pressure values given by Eq. (15);
filled circles: measured oscillation frequency. The broken line in the lower
panel indicates the first acoustical resonance (F;) of the resonator.

value of 7, which results in an almost constant P, The re-
sults for the 500 mm resonator, on the other hand, are much
poorer than those in Fig. 2: both Egs. (11) and (15) produce
values of threshold pressure much lower than the measured
values.

VI. CONCLUSIONS

The above results show that the extended equation for
phonation threshold pressure, given by Eq. (12), provides a
better theoretical characterization than Eq. (13) previously
derived by Titze (1988). In particular, the extended model
contains the oscillation frequency as an explicit parameter,
which was missing in the previous model, and therefore is
able to capture phonation threshold versus frequency rela-
tions.

The results also show that modeling the vocal tract input
pressure with the simple inertive load of Eq. (5) seems a
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crude approximation, which fails to model the effect of the
vocal tract on the phonation threshold pressure with reason-
able accuracy. However, two issues must be considered here:
First, the inertive model is based on the assumption of an
oscillation frequency much lower than the first vocal tract
formant. This assumption does not hold well for the 500 mm
resonator, for which the theoretical results are poor compared
to the data. Second, a lumped impedance representation for
the vocal tract may still be too simple to fit the experimental
data, and a more sophisticated frequency-dependent model
might be required.

Finally, note that the theoretical flow model relies on
many simplifying, and thus questionable, assumptions by
considering that the glottal flow is frictionless, quasi-steady,
and incompressible. Of all these assumptions, the work of
Ruty et al. (2007) tends to show that viscous effects are the
most critical.

All of the above issues are currently being considered
for extensions of this work.
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