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This paper analyzes the interaction between the vocal folds and vocal tract at phonation onset due

to the acoustical coupling between both systems. Data collected from a mechanical replica of the

vocal folds show that changes in vocal tract length induce fluctuations in the oscillation threshold

values of both subglottal pressure and frequency. Frequency jumps and maxima of the threshold

pressure occur when the oscillation frequency is slightly above a vocal tract resonance. Both the

downstream and upstream vocal tracts may produce those same effects. A simple mathematical

model is next proposed, based on a lumped description of tissue mechanics, quasi-steady flow

and one-dimensional acoustics. The model shows that the frequency jumps are produced by

saddle-node bifurcations between limit cycles forming a classical pattern of a cusp catastrophe. The

transition from a low frequency oscillation to a high frequency one may be achieved through two

different paths: in case of a large acoustical coupling (narrow vocal tract) or high subglottal

pressure, the bifurcations are crossed, which causes a frequency jump with a hysteresis loop. By

reducing the acoustical coupling (wide vocal tract) or the subglottal pressure, a path around the

bifurcations may be followed with a smooth frequency variation.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4728170]
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I. INTRODUCTION

According to source–filter theory of phonation, the

vocal tract acts as a linear filter excited by the sound pro-

duced at the larynx (Fant, 1970). The configuration of the

vocal tract has no effect on the dynamics of the vocal fold

oscillation, and therefore the latter may be studied as an iso-

lated system. This conception has been a usual simplifying

assumption to facilitate the analysis of the oscillation dy-

namics, and has permitted to gain an understanding of the

main underlying mechanisms of phonation (see, e.g., Jiang

and Tao, 2007; Lucero, 1999; Steinecke and Herzel, 1995;

Titze, 1988; Zhang et al., 2005). In fact, the separation

between the glottal source and the vocal tract is a reasonable

approximation as long as the fundamental frequency of the

oscillation is well below the first resonance frequency (first

formant) of the vocal tract, as in the case of normal male

adult speech. However, at higher oscillation frequencies, as

in female and child speech and in singing, source–tract inter-

actions due to the acoustical coupling between both systems

become significant. The coupling influences the oscillation

onset and may cause frequency jumps, subharmonics, and

other instabilities (Titze, 2008b). Similar phenomena may be

produced also by lengthening artificially the vocal tract and,

consequently, lowering the formants (Hatzikirou et al.,
2006).

The purpose of this paper is to investigate and model the

acoustical coupling between the vocal fold oscillation and

vocal tract. In recent experimental works, the oscillation has

been simulated and studied by means of mechanical replicas

(Lucero et al., 2011; Ruty et al., 2008; Zhang et al., 2006,

2009). The replicas permit to gather data easily of different

parameters (e.g., subglottal pressure, glottal aperture, oscilla-

tion frequency) under a variety of controlled configurations,

and the data may be used to build and test theories of the os-

cillation. This approach has proven useful to, e.g., validate

theoretical relations of phonation threshold pressure vs fun-

damental frequency (Lucero et al., 2009) and hysteresis

effects at phonation onset vs offset (Lucero et al., 2011),

assess the influence of glottal aperture and vocal fold stiff-

ness on oscillation conditions (Cisonni et al., 2011), and

model nonlinear phenomena observed during singing (Bailly

et al., 2010). Particularly, our recent measures of the oscilla-

tion threshold subglottal pressure and fundamental frequency

at the oscillation onset have shown fluctuations of those pa-

rameters as a function of the vocal tract length. Even drastic

jumps of oscillation frequency may appear when crossing a

vocal tract resonance. Here, the data will be reported and

characterized with a simple physical model.

Onset pressure and frequency fluctuations have also

been found in the experiments by Zhang et al. (2006, 2009)
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Their work focused on the production of aerodynamically vs

acoustically driven modes of oscillation as a function of the

subglottal and supraglottal acoustics loads. The present study

follows a similar direction; however, a simple theoretical

model in terms of the theory of dynamical systems is sought.

The proposed model comes from studies of birdsong

production. In fact, source-tract interactions and frequency

jumps are also relevant in the context of bird-song produc-

tion (Zollinger et al., 2008). In songbirds, sound is produced

at the syrinx, located at the junction between the trachea and

bronchi. Unlike the larynx, the syrinx contains two valves,

each one similar to the glottis, located at the exit of each

bronchus. However, the membranes at each valve oscillate

by the same aeroelastic mechanism of the vocal folds. Fre-

quency jumps are a characteristic signature of some song-

birds, and may be produced by either alternate action of both

sides of the syrinx (Laje and Mindlin, 2005) or source–tract

interaction (Arneodo and Mindlin, 2009). The case of

source–tract interaction was analyzed using a version of

Titze’s (1988) mucosal wave model coupled to waveguide

analogy of the vocal tract. It was shown that the reflected

acoustical wave from the bird’s beak back to the syrinx inter-

acts with the oscillation of the syrinx’s membranes, in a way

that depends on the relative phase between them.

The subject of source–tract interaction on human phona-

tion has been recently analyzed by Titze (2008a,b), in a

extensive work using models and data from subjects. The

present paper has a similar objective, however, a much sim-

pler representation of the interaction will be proposed. As in

the work of Zhang et al. (2006), Titze’s model of the vocal

tract relies on concepts from the theory of electrical circuits.

The model of Arneodo and Mindlin (2009), on the other

hand, is based the propagation of plane acoustical waves and

is therefore closer to the represented phenomenon. Further, it

is elegant in its simplicity, which facilitates the analysis. A

similar approach was previously used by Mergell and Herzel

(1997) to simulate biphonation in asymmetrical vocal folds.

The subject of source–tract interaction is also relevant

for its implications to vocal registers. Registers are distinct

types of voice qualities over specific ranges of fundamental

frequency and loudness, such as the chest and falsetto (Titze,

1994). Transitions between registers during speech and sing-

ing typically occur with voice discontinuities and a hystere-

sis effect (Svec et al., 1999). A few theories have been

proposed to explain the mechanism of the chest-falsetto tran-

sition, based on subglottal resonances and specific actions of

laryngeal muscles (Titze, 1994). Although numerical simula-

tions of the phenomenon using multimass representations of

the vocal folds have been reported (Tokuda et al., 2007,

2010), a clearer model of its dynamics is still desirable.

II. MODEL

A. Glottal source

The vocal fold model is based on an original characteri-

zation of the oscillation as a mucosal wave movement by

Titze (1988), and is schematically shown in Fig. 1. It

assumes complete right–left symmetry, and allows for

motion of tissues only in the horizontal direction. A wave

propagates through the superficial tissues, in the direction of

the airflow (upward).

Its governing equations have been extensively discussed

in the literature (see, e.g., Laje et al., 2001, 2002; Lucero

et al., 2011; Titze, 1988), and may be summarized as fol-

lows. The equation of motion for the tissues is

M€x þ B½1þ gx2ðtÞ� _x þ Kx ¼ Pg; (1)

where x is the tissue displacement at the midpoint of the

glottis, M, B, and K are the mass, damping, and stiffness,

respectively, per unit area of the vocal fold medial surface, g
is a nonlinear dissipation coefficient, and Pg is the glottal

mean air pressure. The glottal aerodynamics is characterized

by

Pg ¼ Pi þ
Ps � Pi

kt
1� a2

a1

� ke

� �
ða1 > 0Þ; (2)

where Pi is the supraglottal pressure (at the epilarynx), Ps is

the subglottal pressure, a1 and a2 are the cross-sectional glot-

tal areas at the lower and upper edges of the vocal folds,

respectively, kt¼ kc � ke is a transglottal pressure coeffi-

cient, 1.0 < kc� 1.4 is a pressure loss coefficient for the

glottal entry and 0� ke� 0.2 is a pressure recovery coeffi-

cient for the glottal exit.

Further, the glottal areas are given by

a1ðtÞ ¼ 2Lv½x0 þ xðtþ sÞ�; (3)

a2ðtÞ ¼ 2Lv½x0 þ xðt� sÞ�; (4)

where Lv is the vocal fold length, x0 is the vocal fold

displacement at rest (prephonatory position), and s is the

time delay for the surface wave to travel half the glottal

height T.

B. Vocal tract

Following Arneodo and Mindlin (2009), the vocal tract

downstream the glottis is represented as a hard-walled tube

of area Ai and length Li.

The total input pressure Pi is the sum of two compo-

nents: A static pressure �Pi and an acoustic pressure ~Pi,

FIG. 1. Mucosal wave model of the vocal folds (Titze, 1988).
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Pi ¼ �Pi þ ~Pi : (5)

Further, the acoustic pressure at the tube entry is the result-

ant of two components: an incident pressure wave injected

into the tube from the glottis, denoted by pþi , and a backward

propagating wave after partial reflection at the other end of

the tube (the open mouth), denoted by p�i ,

~Pi ¼ pþi þ p�i :

Doing similarly for the vocal tract upstream the glottis,

Ps ¼ �Ps þ ~Ps ¼ �Ps þ pþs þ p�s :

The incident pressure wave at the downstream tube is pro-

duced by variations of the airflow coming from the glottis

pþi ¼
q0c~u

Ai
; (6)

where q0 is the unperturbed air density, c is the sound speed,

and ~u is the varying component of the glottal air volume

velocity.

The volume velocity at the glottis is u¼ va, where v is

the particle velocity and a¼ 2Lv[x0 þ x(t)] is the glottal area

(for simplicity, variations along the glottal channel are disre-

garded here). According to Titze (1988), variations in the

volume velocity are produced mainly by variations in the

glottal area, and therefore the approximation ~u ¼ �v � ~a may

be adopted, where �v is the mean particle velocity and ~a is

the glottal area variation. The vocal fold displacement is

xðtÞ ¼ �x þ nðtÞ, where �x is an equilibrium position (to be

computed later) and n(t) is the displacement from that posi-

tion. Then, ~aðtÞ ¼ 2LvnðtÞ and

pþi ðtÞ ¼ ai�vnðtÞ; (7)

where

ai ¼
2Lvq0c

Ai
(8)

is a coupling coefficient.

The reflected wave may be simply expressed as

p�i ¼ rip
þ
i ðt� viÞ, where �1� ri� 1 is a reflection coeffi-

cient, and vi¼ 2Li/c is the time delay for the acoustic wave

to travel forth and back the vocal tract tube. Any attenuation

suffered by the wave along the vocal tract is neglected.

Therefore, the acoustic pressure at the downstream vocal

tract entry is

~PiðtÞ ¼ ai�v½nðtÞ þ rinðt� viÞ�: (9)

Similarly, for the upstream vocal tract

~PsðtÞ ¼ �as�v½nðtÞ þ rsnðt� vsÞ�; (10)

where as, rs, and vs are the upstream coupling coefficient,

reflection coefficient (at the lungs end) and acoustic wave

delay to travel back and forth the upstream tube. The sign

of the acoustical wave is negative, because the positive

direction of the glottal flow is opposite to the direction of pþs
(from the glottis to the lungs).

Finally, let us consider the equilibrium position �x. Let-

ting xðtÞ ¼ �x (constant), then the above-presented equations

produce

K�x ¼ �Pi �
ke

kt
D �P; (11)

where D �P ¼ �Ps � �Pi. Applying next the change of variable

x ¼ nþ �x, the model becomes

M€n þ B½1þ gðnþ �xÞ2� _n þ Kn

¼ 1

kt
½D �PFa þ ~Piðkc � FaÞ � ~Psktðke � FaÞ�; (12)

where Fa is the glottal area function

Fa ¼ 1� a2

a1

: (13)

In the previous equations, the mean particle velocity �v may

be approximated by

�v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D �P=ðktq0Þ

q
(14)

(Alipour et al., 2001; Fulcher et al., 2006; Titze, 1988).

III. DATA

The source–tract interaction was studied experimen-

tally in a mechanical replica of the vocal folds (Cisonni

et al., 2011; Ruty, 2007; Ruty et al., 2005; Ruty et al.,
2007). The replica consists of two pieces of metal covered

with latex, which mimics the vocal fold structure in a 3:1

scale and a 2 cm length. The space between each metal pi-

ece and the latex cover is filled with water at a controlled

internal pressure. The downstream vocal tract is simulated

with a cylindrical tube, with an internal diameter of 2.5 cm

and variable lengths. An upstream cylindrical tube of the

same diameter connects the replica to a large pressure res-

ervoir fed by a constant pressure. The reservoir is filled

with acoustical foam to avoid internal resonances. The

pressure upstream of the replica (subglottal pressure) is

measured by a pressure sensor (Kulite XCS 093) with a typ-

ical accuracy of 65 Pa, and the separation between the op-

posite latex folds (aperture) is measured using a laser setup

with a typical accuracy of 0.01 mm. Details of the replica

and several illustrations may be found in the previously

cited references.

First, the mechanical response of the replica was meas-

ured in order to obtain its natural frequencies and respective

Q (quality) factors, following a method by Gilbert et al.
(1998). The latex folds were excited by an acoustical signal

from a compression chamber located in its vicinity, without

any physical contact. The signal’s frequency was increased

from 50 to 400 Hz at 1 Hz step, and at each step, the replica’s

aperture was measured. From the data, the amplitude and

phase of the oscillatory motion of the latex folds were com-

puted. The natural frequencies (peaks in the amplitude
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response) and respective Q factors (bandwidth relative to the

natural frequency) were obtained by fitting a quadratic poly-

nomial in the vicinity of each peak (Robinson and Clegg,

2005). Figure 2 shows an example of the measured response.

Next, measures of the upstream pressure and the repli-

ca’s aperture were obtained while increasing the air pressure

in the reservoir from zero until an oscillation of the latex

was detected. Then, the pressure was decreased until the os-

cillation was interrupted. Figure 3 shows an example of the

measured data. The time instants of oscillation onset and off-

set were determined by spectral analysis on upstream pres-

sure signal (Ruty et al., 2005), and the mean upstream

pressure and oscillation frequency at those times were com-

puted. In the present study, only the onset values will be

reported and used.

Several measures were taken at different lengths of the

upstream and downstream tubes, simultaneously keeping all

other parameters constant. In a first set of measures, the

length Li of the downstream tube was varied from 1.6 to

245.6 cm, at 55 different lengths, with a fixed upstream tube

of Ls¼ 15 cm. In a second set, the downstream tube was

removed and the upstream tube’s length was varied from 8.5

to 176.8 cm, at 8 different lengths. The sets of measures

were done with an interval of several days apart, and differ-

ent latex covers in the replica. Therefore, the mechanical

response of the replica was repeated before each set. The

natural frequencies and Q factors for the first set are those

reported in Fig. 2. For the second set, the mean values of the

first three resonance frequencies of the replica are 130, 172,

and 264 Hz, and their Q factors are 12.7, 17.5, and 13.6,

respectively. The initial aperture of the replica (measured

without airflow) was h0¼ 1.33 mm for the first set, and

h0¼ 1.50 mm in the second set.

IV. COMPARISON OF THE MODEL WITH THE DATA

A. Equations of oscillation threshold pressure

The linearization of Eq. (12) is

M€n þ B _n þ Kn ¼ D �P

ktðx0 þ �xÞ ½nðtþ sÞ � nðt� sÞ�

þ kcai�v

kt
½nðtÞ þ rinðt� viÞ�

þ keas�v

kt
½nðtÞ þ rsnðt� vsÞ�: (15)

Proposing a solution of the form n(t)¼Cekt, where C and k
are complex constants, and seeking nonzero solutions, pro-

duces the associated characteristic equation

Mk2 þ Bkþ K ¼ 2D �P

ktðx0 þ �xÞ sinhðksÞ

þ kcai�v

kt
ð1þ rie

�kviÞ

þ keas�v

kt
ð1þ rse

�kvsÞ: (16)

The conditions to start an oscillation may be found by apply-

ing Hopf’s bifurcation theorem for functional differential

equations (Hale and Lunel, 1993). Assuming a pair of imagi-

nary roots (k¼6ix) of Eq. (16), and separating real and

imaginary parts, we find

�Mx2þK¼ �v
kt
½kcaið1þri cosxviÞþkeasð1þri cosxvsÞ�

(17)

and

xB ¼ 2D �P

ktðx0 þ �xÞ sinðxsÞ

� �v

kt
½kcairi sin xvi þ keasrs sin xvs�: (18)

It may be shown that at the value of D �P defined by the previ-

ous equations, the roots cross the imaginary axes of the

FIG. 2. Example of the mechanical response of the replica. The first three

resonance frequencies are 132, 168, and 266 Hz, and their Q factors are

10.5, 8.5 and 12.6, respectively.

FIG. 3. Example of the data collected from the replica when varying the

upstream pressure. (Upper plot) Aperture (separation) between the two latex

folds. (Lower plot) Pressure immediately upstream the replica. The black

curve in the lower plot is the mean pressure, computed by low-pass filtering

the measured pressure.
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complex plane from left to right, and that all other roots of

the characteristic equation have negative real parts (Lucero

and Koenig, 2007). Therefore, the equations define the oscil-

lation threshold value of the transglottal pressure D �P and the

frequency x at the oscillation onset.

The threshold equations clearly show that the vocal tract

introduces fluctuations in both the oscillation frequency and

the transglottal pressure at oscillation onset. The effects of

the upstream and downstream tracts are additive, in agree-

ment with the findings of Titze (2008a). Note that the acous-

tical terms related to the upstream and downstream vocal

tracts are scaled by coefficients ke and kc, respectively. As

kc � ke, then the downstream vocal tract has a much larger

effect than the upstream tract. If the upstream vocal tract is

neglected, with ke¼ 0, and the downstream vocal tract is

removed (ai¼ 0 or vi¼ 0), the equations reduce to x2¼K/M
and �Ps ¼ ktx0Bx=½2 sinðxsÞ�, which were already deter-

mined by Lucero and Koenig (2007).

B. Results when varying the length of the
downstream tube

From the mechanical response of the replica, the second

resonance was adopted as its natural frequency fn
¼

ffiffiffiffiffiffiffiffiffiffi
K=M

p
=ð2pÞ ¼ 168 Hz. This frequency was the closest

resonance to the measured oscillation frequencies (which were

in the range 150–180 Hz), and provided the best match of the

theory with the data. Its Q factor is Q ¼
ffiffiffiffiffiffiffiffi
MK
p

=B¼ 8:5.

The oscillating mass of the replica is mainly determined

by the body of water, because the mass of the latex cover may

be neglected in comparison. From the geometrical dimensions

of the replica, the volume of water contained in the replica

was estimated as 0.63 cm3 (Ruty, 2007). The medial area of

the latex surface, exposed to the airflow, is 1.57 cm2. These

values would produce a mass per unit area M¼ 0.4 g/cm2.

Now, probably not all the mass of water and latex surface are

involved in the oscillatory motion. However, we keep the

above-mentioned value as a crude estimate. With that value

for M, we obtain K¼ 446 kdyn/cm3 and B¼ 49.7 dyn s/cm3.

The prephonatory rest position is x0¼ 0.67 mm, computed as

half the measured aperture between the opposite latex folds.

An estimate of the time delay s may be determined assuming

a phase delay (d) between the oscillation at the entry and

exit of the latex channel of 60� (Titze, 1988), which, at

an oscillation of 168 Hz (natural frequency), corresponds to

s¼ d/(4pf)¼ 0.5 ms. We assumed further kc¼ 1.2.

The time delay for the acoustical wave to travel back and

forth the downstream tube is vi¼ 2Li/c, where c¼ 343.2 m/s is

the speed of sound in dry air and 20 �C. The reflection coeffi-

cient at the mouth end is ri¼ (z0 � zi)/(z0 þ zi), were z0 is the

radiation impedance and zi¼ q0 c/Ai is the acoustic impedance

of the tube. The radiation impedance was computed using the

low-frequency approximation for a flanged pipe in free space

z0 �
1

2
q0cAi

jka

1þ jka
; (19)

where k¼ 2pf/c and a ¼
ffiffiffiffiffiffiffiffiffiffi
Ai=p

p
(Lous et al., 1998). For fre-

quency values below 200 Hz, q0¼ 1.204 kg/m3 and other

parameters as indicated previously, the above-presented

equations produce �1� ri��0.997 (with an imaginary part

smaller than 0.04), and therefore, a value of ri¼�1 was

adopted. Due to the large area of the tube, the static pressure

at its entrance is �Pi � 0. In a first approximation, the effect

of the upstream tube was neglected by assuming ke � 0.

Figure 4 shows the collected data and theoretical results

with the above-mentioned values (curve 1). We may note

large fluctuations in the threshold pressure and frequency

caused by the acoustical coupling with the downstream tube.

There are even frequency jumps when the oscillation fre-

quency is slightly above a tube resonance. At the jumps, the

threshold pressure is at a maximum. The theory matches

the data in good qualitative approximation, considering the

extreme simplifying assumptions of the mathematical model,

and the crude estimates of some of its parameters. The theo-

retical threshold pressure is lower than the data, and the fre-

quency shows steeper decreases. However, both the pressure

and the frequency follow the same pattern as the data.

To investigate if a better match of the theory with the

data could be obtained, a least squares optimization proce-

dure was run with s and M as parameters (these two parame-

ters were selected because the proposed values mentioned

previously were crude estimates). Their optimal values were

determined by minimizing the sum of squared differences

between measured and computed values of oscillation fre-

quency f¼x/(2p) and static subglottal pressure �Ps. The

result of the optimization was s¼ 1.57 ms and M¼ 1.38 g,

which produce curve 2 in Fig. 4. The match with the data is

now very good, although the fluctuations of the onset fre-

quency are smoother and do not show drastic jumps as the

data. The large differences between the optimal values of M
and s and their respective initial estimates may be attributed

to the uncertainty of the vibration portion of the mass of

water and latex surface, and of the actual value of the time

FIG. 4. Subglottal pressure (top) and oscillation frequency (bottom) at os-

cillation onset vs length of the downstream tube, for a fixed upstream tube.

Data (circle); theoretical result (solid curve); resonance frequencies of the

downstream tube (broken curve in the bottom plot). Curve 1 is the theoreti-

cal result with s¼ 0.5 ms and M¼ 0.4 g/cm2. Curve 2 is the theoretical result

with s¼ 1.75 ms and M¼ 1.38 g/cm2.
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delay of the latex wave motion. For example, the same mass

of water on a latex surface of one-third the initial estimate

produces a value of M close to the optimal value. Further,

the optimal time delay is in the order of standard values for

the vocal fold oscillation. For example, a mucosal wave

propagating at 100 cm/s on a vocal fold height of 3 mm

(Titze, 1988) produces a value of s¼ 1.5 ms.

C. Results when varying the length of the upstream
tube

Prior to the second set of measures, the mechanical

response of the replica was measured again. This time, its

second resonance was 172 Hz and its corresponding Q factor

was 17.5. Assuming, again, M¼ 0.4 g/cm2, we obtain

K¼ 467 kdyn/cm3 and B¼ 24.7 dyn s/cm3. The prephona-

tory rest position was x0¼ 0.75 mm.

For the upstream tube, the time delay for the acoustical

wave to travel back and forth is vs¼ 2Ls/c. Its reflection

coefficient was estimated by considering that it opens into

the reservoir, where no acoustical wave may propagate due

to the acoustical foam. Therefore, the radiation impedance is

zero and rs¼�1. In case of the actual phonatory system, the

lungs may be modeled as an exponential horn with a cutoff

frequency around 500 Hz (Lous et al., 1998). All acoustical

waves below that frequency are reflected, and so the reflex-

ion coefficient is also rs¼�1.

The pressure recovery coefficient has been estimated as

ke¼ 2(a2/Ai)(1� a2/Ai) (Ishizaka and Matsudaira, 1972). Let-

ting a2¼ 2 Lx0¼ 0.3 cm2 and using Ai¼ 4.9 cm2, we obtain

ke¼ 0.11.

Figure 5 shows the collected data and the theoretical

results. Again, we note the large fluctuations in transglottal

pressure and oscillation frequency, and a frequency jump

slightly above the tube’s first resonance. Curve 1 shows the

theoretical prediction with the above-mentioned parameters,

which do not reproduce the observed fluctuations and fre-

quency jump. For a better match, a least squares optimiza-

tion procedure was again run with s and M as parameters.

The result of the optimization was s¼ 0.025 ms and

M¼ 0.064 g, which produce curve 2 in Fig. 5. The match

with the data is now reasonably good, although the predicted

transglottal pressure has values much lower than the meas-

ured ones. In this case, the optimal values found for M and s
are much lower than those found for the first set of measures

(in the previous section), and suggest a small mass moving

laterally with almost no wave-like motion of the latex cover

(d � 3�). It might be possible that the use of a new latex

cover for the second set of measures, under slight different

adjustments, or the absence of a downstream vocal tract had

triggered a different mode of oscillation of the latex cover.

V. DYNAMICS OF THE FREQUENCY JUMPS

Let us consider next the production of frequency jumps.

To isolate its main mechanism from any influence of the

pressure variations shown in the plots of the previous sec-

tions, we consider a constant static subglottal pressure above

the onset threshold. Figure 6 presents a simulation of the os-

cillation with a static subglottal pressure of 2500 Pa and a

FIG. 5. Subglottal pressure (top) and oscillation frequency (bottom) at os-

cillation onset vs length of the upstream tube, without downstream tube.

Data (circle); theoretical result (solid curve); resonance frequencies of the

upstream tube (broken curve in the bottom plot). Curve 1 is the theoretical

result with the same parameters used for curve 1 in Fig. 4 and ke¼ 0.11.

Curve 2 is the theoretical result with s¼ 0.025 ms and M¼ 0.064 g, and

other parameters as presented earlier. There is one measure not shown in the

top plot, with L¼ 89.3 cm and �Ps ¼ 2600 Pa, which is outside the vertical

range. Also, for L¼ 8.5 cm no oscillation could be detected.

FIG. 6. Simulation of the latex oscillation when varying f0 from 400 to

1200 Hz in a time period of 2 s, with Ps¼ 2500 Pa, Li¼ 17.16 cm (first reso-

nance at 500 Hz), B¼ 10 dyn s/cm3, s¼ 1 ms, g¼ 106 cm�2, ke¼ 0.11 and

other parameters as in curve 1 of Fig. 4. The two upper panels show a por-

tion of the vocal fold aperture and the subglottal pressure. The third panel is

the oscillation frequency, computed as the inverse of the period of each

cycle, and the bottom panel is the amplitude.
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varying natural frequency from 400 to 1200 Hz. As shown,

the model is able to produce a stable oscillation, although its

amplitude must be small so that the glottal closure is never

achieved. For the simulations, a first resonance of the down-

stream tube of 500 Hz was adopted, which corresponds to a

length of 17.2 cm. The subglottal pressure varies in syn-

chrony with the vocal fold oscillation: Maxima of the sub-

glottal pressure occur at the minima of the glottal aperture.

The variation is consequence of the acoustical wave in the

upstream tube, and may take a large value, as revealed by

Fig. 3.

Figure 7 shows results when the downstream acoustical

coupling is increased 10 times by reducing the area of the

tube. Each plot was constructed by increasing first the natu-

ral frequency from 400 to 1200 Hz, and next decreasing the

frequency in the same interval. In this case, we observe fre-

quency and amplitude jumps when the oscillation frequency

crosses the first resonance of the tube, with a hysteresis loop.

The frequency jumps may be analyzed using Eq. (17).

The equation was derived for the oscillation onset, but it also

holds as an approximation when the oscillation amplitude is

small (i.e., much smaller than the rest position x0), as in the

case of Figs. 6 and 7.

Letting f0 ¼
ffiffiffiffiffiffiffiffiffiffi
K=M

p
=ð2pÞ be the natural frequency, and

introducing the first resonance frequencies of the down-

stream and upstream tubes, fi1¼ 1/(2vi) and fs1¼ 1/(2vs),

respectively, Eq. (17) becomes

f 2
0 � f 2¼ �v

4p2ktM
kcai 1�cos

pf

fi1

� �
þkeas 1�cos

pf

fs1

� �� �
:

(20)

When the coupling with the vocal tracts is ai¼ as¼ 0,

Eq. (20) has the unique solution f¼ f0; i.e., the vocal folds

oscillate at their natural frequency. As the coupling increases

(e.g., by reducing the area of the downstream vocal tract),

multiple solutions might appear. Figure 8 shows a diagram

of the regions with different numbers of roots, for

fi1¼ 500 Hz and other parameters as in Figs. 6 and 7. The

existence of n roots in a particular region indicates n oscilla-

tory solutions (limit cycles).

Figure 9 shows a 3D view of the same results. The 3D

surface folds on itself and forms the characteristic shape of a

FIG. 9. 3D view of the results in Fig. 8.

FIG. 7. Simulation of the latex oscillation when the cross-sectional area of

the downstream tube is one-tenth of the value used for Fig. 6. The top panel

shows the oscillation frequency, computed as the inverse of the period of

each cycle, and the bottom panel is the amplitude.

FIG. 8. Number of roots of Eq. (20). On each of the curves that separate the

one- and three-root regions, the equation has two roots and a saddle-node

bifurcation between limit cycles occur, in which a stable and an unstable

limit cycle coalesce and cancel each other. The trajectory from point A to B
represents the simulation plotted in Fig. 10. Point C indicates a cusp

catastrophe.

FIG. 10. Oscillation frequency when moving from point A to B in Fig. 8

across the fold. The arrows indicate frequency jumps, forming a hysteresis

loop.
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cusp catastrophe. The folded surface causes a frequency

jump with hysteresis loop, when a point moves from the

lower part of the surface (point A in Fig. 8) to the upper part

(point B in Fig. 8) crossing the fold. Figure 10 illustrates the

frequency jumps. If, instead of crossing the fold, the point

moves from A to B following a path around the cusp (point

C in Fig. 8), then the jump will not occur.

Equation (20) also reveals that the occurrence of fre-

quency jumps also depends on the static value of the trans-

glottal pressure, through the mean air particle velocity �v [see

also Eq. (14)]. Increasing �v has the same effect as increasing

the acoustical coupling of the vocal tract (ai and as).

VI. CONCLUSIONS

The threshold values of both the subglottal pressure and

frequency of the vocal fold oscillation are sensitive to the

acoustical coupling between glottal source and the upstream

and downstream vocal tracts. Fluctuations of both values

occur as the resonance frequencies of the upstream and

downstream vocal tracts are varied by changing their length,

and may include drastic jumps of the oscillation frequency.

The acoustical coupling with the upstream and downstream

vocal tracts have additive effects; however, the influence of

the downstream coupling is much larger than the upstream

one.

The oscillation frequency jumps occur when the fre-

quency is slightly above a vocal tract resonance, in coinci-

dence with maxima of the threshold pressure. From the point

of view of theory of dynamical systems, the jumps are pro-

duced by saddle-node bifurcations between limit cycles

forming a classical pattern of a cusp catastrophe. Moving

from a low frequency oscillation to a high frequency one

may be achieved through two different paths: Crossing the

saddle-node bifurcations, with a frequency jump and a hys-

teresis loop, or moving around the cusp, with a smooth tran-

sition from the low to the high frequency. The selection of

one or the other path depends on the level of acoustical cou-

pling, which is inversely proportional to the cross-sectional

area of the vocal tract, and also on the level of transglottal

pressure. Thus, a narrow vocal tract results in a large cou-

pling, which will produce the frequency jumps, whereas a

wide vocal tract results in a low coupling and a smooth fre-

quency transition. The same effects may be achieved by

keeping the coupling constant, and setting a large transglot-

tal pressure vs a smaller one, respectively.

The above-mentioned model might also describe voice

discontinuities observed at chest-falsetto register transitions.

The transitions might be caused by the acoustical coupling

with the supraglottal tract, in agreement with computer sim-

ulations by Tokuda et al. (2010), and also with the subglottal

tract, as proposed by Titze (1994). Yet, it has been claimed

that the vocal fold oscillation may produce chest-falsetto

transitions also in the absence of a vocal tract, as shown in

experiments with excised larynges (Berry et al., 1996; Svec

et al., 1999). Although theoretical models based on multi-

mass representations of the vocal folds are capable of repro-

ducing the data without any vocal tract acoustical load

(Tokuda et al., 2007), the origin of the observed transitions

is not clear. In fact, Zhang et al. (2006) pointed out that the

experimental setups contained a subglottal tube to pass air to

the larynx, whose length was unspecified. Therefore, it may

be possible that the transitions were caused by acoustical

interaction with the subglottal system.

The results may be used to interpret recent observations

by Koenig et al. (2011) in subjects producing speech. They

found that the intraoral pressure at voicing onset following

an obstruent consonant is always larger for a high vowel

than a low vowel. High vowels have a lower first formant

than low vowels; e.g., typical values for /i/ vs /a/ are 270 Hz

vs 730 Hz (male values) and 310 Hz vs 850 Hz (female val-

ues) (Stevens, 1998). Assuming an approximately constant

subglottal pressure in each subject, then the data implies a

lower transglottal pressure for a larger formant. In the case

of the replica used in the present study, the above-mentioned

formant values would correspond to downstream tube

lengths around 30 cm for /i/ and 11 cm for /a/, which fall in

the left-hand side of the plots in Fig. 4. Further, as the static

downstream pressure is approximately atmospheric, then the

vertical axis may be also interpreted as transglottal pressure.

Therefore, both the measures and theoretical prediction

show a higher transglottal threshold at an 11 cm tube length

(/a/) vs 30 cm (/i/), in agreement with the speech data.

It is interesting to note also that both the experiments

and theory show that, except for the regions where the oscil-

lation frequency is close to a tube resonance, the oscillation

frequency always decreases when the tube’s length

increases. This pattern is in the opposite direction to the

well-known “intrinsic F0 effect” in speech: Voice’s funda-

mental frequency is higher in high vowels than low vowels

(Whalen and Levitt, 1995). In terms of equivalent down-

stream tube lengths, the effect would mean that the oscilla-

tion frequency should increase with the tube length. Its

origin is still not clear and under debate. However, our

results suggest that the effect is not caused by acoustical

interaction with the vocal tract.

The results also agree with several past modeling stud-

ies, which have found that the inertia of the column of air

downstream the glottis has the effect of enhancing the vocal

fold oscillation, when the oscillation frequency is below the

first formant (see, e.g., Titze, 1988). However, Fig. 4 shows

that, below the first formant, the vocal tract effect has a “U”

shape curve and so the enhancing effect only occurs in the

left-hand side of that curve. The theoretical minimum occurs

at 27.1 cm (both curves 1 and 2), which corresponds to a first

resonance frequency of 316.6 Hz. At that length, the theoret-

ical oscillation frequency is 161 Hz (curve 1) and 164 Hz

(curve 2), which is about half the resonance frequency. In

fact, it is easy to show that in the case of a constant oscilla-

tion frequency, a minimum occurs when the resonance fre-

quency is exactly twice the oscillation frequency.

Our study is also in general agreement with the theory

of nonlinear source-filter coupling developed by Titze

(2008a,b) based on multimass model simulations and vocal

exercises from human subjects. We stress again the helpful

resource provided by the mechanical replica, which allows

us to test theories by easily collecting relevant data in a con-

trolled experimental setup. Further, the simplicity of the
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proposed theoretical model permits to isolate and analyze

main mechanisms of the oscillation. On the other hand, bet-

ter qualitative agreement with the data demands a more so-

phisticated model, with better flow and acoustic models.
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