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1 | INTRODUCTION

In this work, we aim at better understanding the generation and radiation mechanisms of sibilant /s/, by means of compu-
tational aeroacoustics (CAA) performed on a realistic vocal tract geometry. In particular, we will explore the possibilities
of CAA to determine the separate acoustic contributions from the flow noise generated near the lip opening and from its
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FIGURE 1 Schematic of the midsagittal section of the human vocal tract configured to generate an /s/

diffraction by the upper incisors. The influence of the latter on the characteristic high-frequency peaks of an /s/ realization
will be analyzed. Besides, this work will constitute a first applied example of the numerical strategy reported in Guasch
et al,' which avoids using hybrid finite element/boundary element CAA approaches. Also, the work constitutes another
step towards demonstrating the potential of large-scale physics-based numerical simulations in speech production.

A schematic of the midsagittal section of the human vocal tract with the various speech articulators configured to
generate an /s/ is presented in Figure 1. The airflow emanating from the lungs passes through the glottis and propagates
within the vocal tract until it reaches the anterior part of the mouth. There, the tongue blade is pressed upwards to the
hard palate leaving a small constriction where the airflow is accelerated and transformed into a turbulent jet. This passes
through the space between the upper and lower incisors and impinges the cavity between the lower incisors and the
lower lip. As a result, aerodynamic noise is generated, which in turn gets diffracted by all articulators (specially by the
upper incisors) and becomes radiated outwards. The red dashed square in Figure 1 indicates the region where most of
the physics of /s/ generation occurs. It comprises the domain of the vocal tract that will be considered for the numerical
simulations in this work.

Sibilant /s/ sound has a characteristic wide-band spectral content that can be observed in measurements of uttered
sibilants in previous studies.>* Strong differences can be appreciated between those works at low frequencies, yet the
general trends of the spectra are similar. They all exhibit a decay from low frequencies to a dip between approximately 1 to
3 kHz, followed by a strong level increase with frequency up to approximately 8 to 9 kHz, and two peaks whose locations
change depending on each realization. It should be remarked that there are significant variations between the spectral
shapes of speakers reported in the literature because of morphological differences. Therefore, one of the main goals in this
work will consist in reproducing the basic tendencies obtained in most sibilant measurements,*” with special attention
to those in Nozaki et al.? The latter are performed on a mechanical replica upon which our computational domain relies.

A detailed analytical model to describe the physics behind the production of /s/ was proposed in Howe and McGowan.?
In that model, the diffraction of the blocked wall pressure beneath a turbulent boundary layer (TBL) attached to the
incisors was considered as the main noise contributor. A compact Green's function that accounted for a simplified geom-
etry of the incisors and the vocal tract was deduced and convolved with a semiempirical model for the wall pressure
wavenumber-frequency spectrum,’ to predict the acoustic pressure at the far field. More recently, in Yoshinaga et al,'
large eddy simulations (LES) were presented on a 3D realization of the geometry in Howe and McGowan® and lately com-
pared with a realistic one in Yoshinaga et al.!' Those works reported that it is actually in the cavity between the lower
incisors and the lower lip where most of the aeroacoustic source terms concentrate. The simulations in the present work,
also with a realistic vocal tract, support that conclusion. In addition, they essentially show that for points in the vicinity
of the mouth, it is the diffraction of aerodynamic sound by the upper incisors that governs the high-frequency range of
the spectrum, while the contribution to lower frequencies corresponds to the direct sound generated by the eddies within
the lower incisors-lips cavity and its modulation by articulators other than the upper incisors. In fact, in the very recent
work,"”? multimodal acoustic simulations were performed on a simplified vocal tract geometry, placing a monopole source
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term close to the upper teeth. It was shown therein how the shape of the upper teeth region was responsible for the /s/
high-frequency peak. Our more complex CAA simulations that contemplate both, the flow dynamics and the aerody-
namic acoustic waves generated by the flow-induced quadrupole source distribution on a realistic vocal tract, also seem
to support that point of view (yet further investigations on the topic would be worthwhile in the future). Besides, and
concerning the numerical simulations, we shall note that despite the articulators being in constant movement during
speech, stationary vocal tract walls are always assumed in computational models for simplicity.

To validate the above assertions, the numerical strategy in Guasch et al' was implemented. We note that in most hybrid
approaches to CAA, a two-step procedure is followed (see, eg, Bailly et al'*). First, an LES computation is carried out
by means of a finite element (FEM) (or a finite volume) approach, to obtain the aerodynamic noise source terms. Sec-
ondly, these terms are input into an acoustic analogy that is solved using an integral formulation (see, eg, Curle'> and
Ffowcs-Williams and Hawkings'®), which becomes discretized by a boundary element method (BEM). This procedure is
advantageous whenever one has to compute the acoustic pressure at far-field points. Yet, if one is interested in the acous-
tic field at points closer to the turbulent source region that strategy may be not advantageous, because BEM matrices are
fully populated while those of FEM are sparse. The proposal in Guasch et al' goes in this direction and only makes use of
a FEM code. This allows one to solve, in a single computational run and with a sole computational mesh, an LES for the
incompressible Navier-Stokes equations, together with a first-wave equation for the incident flow noise contribution and
a second-wave equation for the sound diffracted by the incisors. The procedure circumvents an inconsistency related to
the numerical solution of Curle's dipolar integral term for low Mach numbers,'* given that the total pressure to be input
in that integral cannot be obtained from an incompressible LES simulation.'? It is also worthwhile mentioning that an
option often found in the CAA literature is that of using a single FEM code, but with two different meshes, one for the flow
dynamics and the other one for the acoustics. This is so because the former needs finer meshes than the second (an eddy
at low Mach numbers typically generates sound with a wavelength much larger than its characteristic size). Resorting to
such a procedure can save computational cost but requires, however, to interpolate between meshes and to smooth the
acoustic source term as well, to avoid numerical instabilities when the considered computational fluid dynamics (CFD)
domain is smaller than the acoustic one.'®

In this work, the focus will be placed on the acoustic outputs of the strategy in Guasch et al,' rather than on the LES
ones, which will be only described qualitatively together with the implemented FEM approach. It is to be noted that 3D
LES simulations of flow passing around teeth-shaped obstacles to better understand the underlying physics of /s/ were
already reported in Van Hirtum et al*** and in Cisonni et al.?! Simulations of flow passing through simplified geometries
with constrictions of different sizes were also conducted in Cisonni et al.>* The work in Nozaki* also resorted to LES
to analyze the flow dynamics of /s/ in a realistic vocal tract geometry. As said before, more recently, Yoshinaga et al'*!
presented simulations on a 3D realization of the geometry in Howe and McGowan?® and compared it with realistic ones.
On the other hand, the LES in the present work has been solved with the stabilized FEM method in Codina et al,** which
behaves as an implicit LES model (see, eg, previous works**®). In implicit LES methods, the additional terms included in
the equations to avoid numerical instabilities simultaneously act as a turbulence model. This has been proven successful
on well-known benchmark turbulence tests for the strategy in Codina et al* (see, eg, literature*”?), as well as through
analytical reasoning.*

In what concerns the acoustic formulations to get the contributions from the direct flow noise in the lower incisors-lips
cavity and from the upper incisors diffraction, one should ideally resort to approaches that could account for the unsteady
flow acoustics in the vocal tract. The most relevant ones for that purpose are probably the linearized Euler equations (see,
eg, Bailly and Bogey*'), or some of its source-filtered counterparts to exclude the vorticity and entropy modes, like the
acoustic perturbation equations (APEs), see Ewert and Schroder.*> In Hueppe and Kaltenbacher,** a low Mach number
version of the APE was introduced (see Guasch et al** for a full numerical solution retaining all terms). In the case of
very low Mach number flows, like those encountered in speech production, the APE in Hueppe and Kaltenbacher® can
be further simplified to the acoustic analogy in Roger.** The wave operator in this analogy is just the standard wave
equation, like in Lighthill's analogy,*® yet the double time derivative of the incompressible pressure field is used as the
source term, instead of the double divergence of the Reynolds tensor of the incompressible velocity field. It can be shown
that this allows the filtering of some pseudosound at the flow region (the term pseudosound refers to pressure fluctuations
indistinguishable by a single microphone from proper sound; see, eg, Crighton et al*’). In this piece of research, both
Lighthill's and the analogy in Roger** will be employed.

To end this introductory section, we would like to remark that aside from static vowel sounds, for which an extensive
literature is available (see, eg, literature®), few papers can be found addressing the numerical simulation of other speech
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sounds. The reason for that is probably the complex physics beneath their generation and the associated high computa-
tional cost. An exception that has received some recent attention is that of vowel-vowel utterances in Guasch et al.* Also,
attention has been paid to some unvoiced sounds (see, eg, Krane®) and in particular to fricative sounds. Related to the
present work, we shall cite Anderson et al>? where different CFD formulations were tested for fricative /[/, using realistic
two- (2D) and three-dimensional (3D) vocal tract geometries. That study compared the performance of a compressible
LES, an incompressible LES, and a Reynolds-averaged Navier-Stokes (RANS) approach. Though a rather coarse mesh
was used, the study reached some interesting conclusions. As expected, the RANS simulation provided no reliable results
because it was unable to capture the rapid acoustic fluctuations, but the compressible LES and incompressible LES com-
bined with an acoustic analogy yielded proper outputs. Another interesting and unexpected result was that although the
flow field from 2D simulations did not match at all with the 3D one, that was not the case for the 2D acoustic pressure
field, which was quite similar to the 3D one.

This paper is organized as follows. The methodology we followed to perform the simulations is detailed in Section 2,
which includes a description of the realistic vocal tract geometry for sibilant /s/, the formulation of the acoustic analogies,
and the splitting strategy between turbulent and diffracted sound. It also outlines the numerical approach used to solve
the problem partial differential equations and includes specific details on how the numerical simulations were run. The
results of the latter are presented in Section 3, with special emphasis on the characteristics of the generated aerodynamic
sound. Conclusions close the paper in Section 4.

2 | METHODOLOGY

2.1 | Vocal tract model

The vocal tract geometry used for the simulations was obtained from the cone-beam computed tomography (CT) scan (CB
MercuRay, 512 slices of 512 pixel x 512 pixel grid with accuracy £0.1 mm) in Van Hirtum et al®* and Fujiso et al,** from
which a physical replica was constructed. The geometry in Figure 2 corresponds to the anterior portion of the vocal tract
of an adult male Japanese native speaker with normal dentition (angle class I) without any speech disorder, in normal
sitting position. The subject was instructed to sustain phoneme [s] at a medium loudness (with a flow rate approximately

Total length of the realistic vocal tract = 3.2cm
TN ol

Upper lip

Lower incisors

FIGURE 2 Three-dimensional realistic vocal tract geometry for /s/ with upper incisors highlighted in green. Location of the measuring
points outside the flow region; P2 and P3 are placed along the x direction and P4 and P5 along z direction
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21 L/min) during 10 seconds. The entire vocal tract was imaged, but only the portion containing the main tongue con-
striction and all the structures downstream of it, including the lip horn (approximately 32 mm), was reconstructed for the
replica, see Figure 2 and dashed window in Figure 1. This simplification intends to focus on the region of the vocal tract
where the generating mechanisms take place, as in Howe and McGowan.? This includes the constricted passage between
the tongue blade and the hard palate (the section with minimum area has a hydraulic diameter of 2.1 mm), the lower
and upper incisors (highlighted in green in the figure), and the lips. According to Van Hirtum et al,> the initial flow con-
ditions upstream (geometry and Reynolds number) do have an influence on the modulation of the acoustic spectrum of
fricatives but do not play an essential role in the physiological mechanisms that lead to the generation of this phoneme.
The experimental mock-up has many similarities to that used in Nozaki et al,? so this reference case will be used in the
qualitative validation of the numerical method.

2.2 | Problem formulation

2.2.1 | Acoustic analogies

As said in Section 1, in this work, the celebrated Lighthill acoustic analogy*® and the analogy in Roger* will be used. For
low Mach numbers, Lighthill's tensor can be well approximated by the double divergence of the Reynolds tensor of the
incompressible velocity field. If one considers a computational domain Q, with outer boundary I', and an embedded
rigid body with boundary I', and external normal n, the Lighthill acoustic analogy to determine the aerodynamic noise
generated by the flow past the body reads (see Figure 3)

1 ()ZP 2 0 0\ :
c_zﬁ_vp=p0(V®V):(u Qu’) inQ,, (1a)
0
Qv
r
rw
Q=0+Q
(A)
Qv
PO

(B)

FIGURE 3 Domains for computing A, the incident acoustic pressure and B, the diffracted acoustic pressure in the proposed splitting
strategy for aeroacoustics
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In Equation 1, p(x, f) stands for the acoustic pressure fluctuations and u® (x, ) for the incompressible velocity field
obtained, eg, from a CFD computation. p, stands for the flow density, ¢, for the speed of sound, and ® for the tensor prod-
uct. In the second line, (1b) introduces a Sommerfeld nonreflecting condition on I'y,, and in the third one, 1c expresses
a rigid wall assumption for the immersed body. The initial conditions are set in (1d). The source term po(V® V) :
(u® ® u°) in Equation 1 is often rewritten as po (V@ u°) : (V® uo)T for computations (T denotes transpose), given that
V-u® = 0 (see, eg, Guasch and Codina®).

With regard to the acoustic analogy in Roger,* it can be obtained from the low Mach APEs in Hueppe and
Kaltenbacher,*® by simply neglecting the mean velocity field and combining the momentum and continuity equations to
get the scalar wave equation for the acoustic pressure. Alternatively, the analogy was originally derived from the follow-
ing straightforward reasoning. Taking the divergence of the Navier-Stokes momentum conservation equation results in
the Poisson equation for the incompressible pressure, p®, namely, V2p° = —p, (V® V) : (u® ® u°), which allows one to
replace Equation (1a) with

|~

0%p
ﬁ - Vz = _VZPO. (2)

C

(=N S}

This equation is interesting for the following reason. It is well known that the acoustic pressure predicted by Lighthill's
analogy is only valid far away from the source region, where no flow motion occurs. If one needs to determine the acoustic
pressure field close to the generation area, it becomes necessary to filter out from p the pseudosound induced by the
nonacoustic pressure fluctuations p°(x, ). In the case of a flow with very small mean convection velocity, in Roger,* it
was proposed to do so by splitting the pressure into its incompressible pseudosound and acoustic, p*(x, t), components,
ie, p(x,t) = p°(x,1) + p%Gx,t). Inserting this factorization in Equation 2 results in the following wave equation for the
acoustic pressure fluctuations

()Zpa _ VZ a —_—
or? I

| =

02 0
%, 3)
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ot

which is to be supplemented with the boundary and initial conditions (1b) to (1d), now for p®(x, t).

2.2.2 | Incident and diffracted contributions to the acoustic pressure

Let us consider the problem depicted in Figure 3, where a flow impinges a cylinder resulting in the generation of aerody-
namic noise. We would like to separate the noise generated by the turbulent wake from its diffraction by the cylinder. To
that purpose, one could typically resort, as said before, to Curle's formulation.!* However, in the case of low Mach number
flows, a severe difficulty appears when trying to account for the rigid body (ie, the cylinder or in our speech problem the
incisors) contribution to the far field. The reason is that the surface integral in Curle's formulation involves the total pres-
sure, which includes both the incompressible and acoustic fluctuations. Obviously, the latter cannot be obtained from an
incompressible CFD simulation.

Though recently some proposals have been made to at least partially mitigate that problem in the framework of inte-
gral formulations (see, eg, Martinez-Lera et al'?), in Guasch et al,! a very different approach was suggested. The latter
considered that the acoustic dipole distribution of Curle's surface integral corresponds, in fact, to the diffraction of the
turbulent noise generated by the jet flow (see, eg, Gloerfelt et al*). On the one hand, the proposed methodology circum-
vented the total pressure difficulty in Curle's surface term. On the other hand, it avoided the need to resort to integral
formulations, so that one can obtain the flow field in the domain, the noise generated by the wake past the cylinder, and
the noise contribution from the latter, in a single finite element computational run.



PONT ET AL. Wl LEY 7 of 17

The cornerstone of the method in Guasch et al® consists in splitting the acoustic pressure, p(x, t), in Equation 1
(the same holds for p?(x;, t) in Equation 3), into incident and diffracted components p(x, t) = p;(x,t) + py(x, t). This leaves
one with two wave equations, one for p;(x, t) and the other one for p,(x, t), which are solved subsequently in slightly dif-
ferent domains (see Figure 3). The procedure goes as follows. Once an acoustic source term s(x, t) is obtained from an
incompressible CFD computation, for instance,

_[vev): (ueu)
S(x7 t) - { —C62 02p0/at2’ (4)

s(x, t) is used as the inhomogeneous term in the wave equation for the incident pressure component, namely,

lazpi 2 .

—— —V*p; =s5in Q, 5a

2 o2 pi (52)
op; op;
ﬂ=—lﬁonlﬂm,t>0 (5b)
on co Ot

a.

pi=0,§=oin9,t=0, (5¢)

with Q := Q, UQ, Q) being the volume occupied by the rigid body (see Figure 3A). In other words, the problem is solved
as if the rigid body (the cylinder in the figure) was absent. After having computed p;(x;, t), the rigid body is inserted again
into the computational domain, which leaves one with Q, (see Figure 3B). The diffracted pressure p,(x, ¢) is then obtained
knowing the value of the incident pressure on the boundary I'y, of the rigid body. That is to say solving

1 azps 2 .
—g P Veps =0in Q,, (6a)
0 S api
— =—Z"onTl,, t>0, 6b
om om0 (6b)
9] d
9s _ _19Ps onTe, t>0, (60)
on co Ot
9]
ps=0,§=01n9v,t=o. (6d)

Note that the summation of problems Equations (5) and (6) recovers the original Lighthill analogy in Equation (1) or that
in Equation 3, depending on the selected source term in (4).

When applied to the production of /s/, the incisors will play the role of the cylinder. Then, Equation (5) will provide
the acoustic contribution p;(x, t) from the jet flow exiting the mouth and being modulated by the vocal tract articulators
(others than the upper incisors) to the total sibilant sound. Hereafter, we will refer to this acoustic contribution as the
incident acoustic field. Besides, the contribution from the aerodynamic sound diffracted by the upper incisors will be
given by the solution p,(x, t) to Equation (6) and we will term it the diffracted field. Let us note that in this work, the
factorization into incident and diffracted components has been only performed for Lighthill's analogy. No splitting into
components has been carried out for the alternative acoustic analogy in Equation 3, albeit that was possible too.

2.3 | Numerical strategy

All the partial differential equations in this work were solved using the method of lines; ie, the spatial discretization was
carried out with the FEM, while the finite difference method was adopted for the time discretization. A custom developed
software was used in all computations.

As regards the incompressible Navier-Stokes equations, it is well known that the Galerkin FEM solution suffers from
strong instabilities for convection dominated flows and for small time steps at the beginning of evolutionary processes.
Moreover, the spatial discrete problem has to satisfy an inf-sup compatibility condition that implies the use of different
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interpolation spaces for the incompressible pressure and velocity fields. An efficient way to circumvent all these difficul-
ties is to resort to residual-based stabilized variational multiscale (VMS) methods, see previous studies.’”*® The unknown
variables in the problem weak form become split into large components, resolvable by the finite element mesh, and sub-
grid scales whose effects onto the large ones must be modeled. In this work, the subscales have been chosen orthogonal
to the finite element space and the stabilization parameters have been obtained from a Fourier analysis of the subgrid
scale equation, see the orthogonal subgrid scale (OSS) method in Codina et al** and Codina.* The OSS stabilization pro-
cedure allows one to use equal interpolation spaces for the pressure and velocity unknowns (linear P1/P1 elements were
employed in our simulations). Besides, and as mentioned in Section 1, the OSS method also acts as an implicit LES model.
As regards time discretization, an implicit third-order backward differentiation formula was implemented. In this way,
one can sidestep the constraints of the CFL condition and dimension the time step according to the highest frequency to
be resolved and the intrinsic time step dictated by the stabilization parameter. We finally note that the stabilized varia-
tional Navier-Stokes equations for the problem at hand have been solved using the second-order fractional step scheme
presented in Codina and Badia.*®

At each discrete time step of the computation, the acoustic source terms in Equation 4 were computed, in the same com-
putational mesh, by postprocessing the incompressible pressure and velocity output from the fluid dynamics computation.
In the case of Lighthill's analogy, the acoustic waves for the incident and diffracted acoustic pressure, Equations 5-6,
were then solved. As mentioned before, the contribution analysis was not performed for the analogy in Roger* as it would
had yielded very similar results to those of Lighthill (see Section 3.2 below). Therefore, only Equation 3 was solved in
this case.

From a computational point of view, the spatial discretization of the wave equation poses no particular problem given
that the Laplacian of the acoustic pressure gives rise to a coercive term in the variational form of the problem. Therefore,
the main difficulty with the numerical solution of the wave equation arises from the time discretization, which should
prevent numerical dissipation as a wave propagates. Given that the focus in this work is on the aerodynamic acoustic
pressure at points only a few wavelengths from the mouth, a second-order BDF2 scheme proves accurate enough to
approximate the time derivatives in the wave equation and its boundary conditions. Another issue to consider is that of
imposing a proper nonreflecting condition at the outer boundary of the computational domain. This often requires the use
of a perfectly matched layer (PML) formulation. However, the outward propagating waves in the present simulations are
nearly spherical and impinge the radiation boundary in the normal direction, which makes a PML unnecessary. Spurious
reflections were avoided by simply imposing the Sommerfeld condition in Espinoza et al,** which has been tested in a
wide range of problems and geometries.

Interested readers are referred to Guasch et al' and references therein for a fully detailed description of the numerical
strategy we have just outlined.

2.4 | Numerical simulations

To perform the numerical simulations, the vocal tract in Figure 2 was set in a circular, rigid, flat baffle. A hemispherical
domain was attached to it to allow the flow to emanate from the mouth and the acoustic waves to propagate outwards
(see Figure 4A).

The following boundary conditions were applied to solve the incompressible Navier-Stokes equations. A velocity of
(0,2.4,0) m/s was prescribed at the inlet section. This was scaled from the blower in Van Hirtum et al,>® where the role
of laminar/turbulent initial and inlet flow conditions is discussed in detail, and corresponds to a Reynolds number of
Re = 8850, according to the inlet section diameter. No turbulence was prescribed at the inlet. Nonslip conditions were
applied to the whole vocal tract and baffle surfaces, while the hemispherical surface was considered as an open boundary.?
As regards the acoustic computations, the vocal tract and baffle were assumed rigid, whereas as mentioned, a nonreflect-
ing boundary condition was applied at the hemispherical boundary and at the flow inlet. The first-order Sommerfeld
boundary condition in Espinoza et al®* did not led to any spurious reflection in the present example. The following values
were taken for the physical parameters appearing in the equations: an air density of p, = 1.2kg/m?3, a kinematic viscosity
of v = 1.5 x 107> m?/s, and a sound speed of ¢, = 343 m/s.

At low Mach numbers, M, an eddy of characteristic size [ essentially radiates sound of wavelength A ~ O(l/M). Taking
into account that, according to the inlet flow speed, the computed Mach number is M ~ 0.007 (though it can locally reach
values up to M ~ 0.23) and that frequencies up to 12 kHz are to be captured to reproduce the physics of /s/, very fine spatial
meshes are required for the simulations. Therefore, a computational mesh of 45 million linear tetrahedral elements with
equal interpolation for all variables (approximately 36 million degrees of freedom for the CFD problem and approximately
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FIGURE 4 A, Meshed computational domain including the vocal tract geometry and the far field. B, Zoom of the refined mesh region

9 million for the acoustics) was used in this work (see Figure 4A,B for a general view and mesh refinement details). The
mesh size ranges from 1 = 0.025 mm close to the incisors, where the smallest turbulent flow scales are expected, to
h = 2.5 mm outside the mouth. The latter guarantees having about 12 nodes per wavelength at 12 kHz (4 ~ 30 mm).
Obviously, more optimal meshes could have been obtained by resorting to adaptive strategies (see, eg, Kannan et al®* for
an example in the biological context), though this issue lies out of the scope of the current paper.

As explained in the previous section, a total of three equations are to be solved in the same finite element computational
run (four if the acoustic analogy in Roger* is chosen). Performing such computations with very large models is complex.
To that purpose, a domain decomposition with an message passing interface (MPI) distributed memory scheme was car-
ried out so as to run the problem at the MareNostrum computer cluster, of the Barcelona Supercomputing Centre (BSC).
A period of 10.8 milliseconds with a time step of At = 5 x 107° seconds (dimensioned according to the highest audible
frequency) was simulated. This sufficed to reach a statistical stationary state. The computational run lasted approximately
30 hours using 256 processors. A Biconjugate Gradients solver with Pilut preconditioner of the Hypre library was used to
solve the FEM algebraic matrix systems, all of them integrated in PETSc.®

3 | RESULTS

3.1 | Flow field and acoustic sources

The qualitative results from the CFD simulation confirm the general theoretical framework describing the mechanisms of
/s/ generation and provide some further insight to it as well. The jet flow is strongly accelerated in the constriction between
the tongue blade and the hard palate, where the flow diverts (see Figure 5A). This can also be appreciated from the flow
speed profile in Figure 5B (the cut plane is indicated with a dashed line in Figure 5A), where it can be observed how the
tongue closes the tract in the transverse direction, forcing the flow to concentrate in a small region before impacting the
upper incisors. The flow is firmly accelerated again at the interteeth space reaching local Mach numbers up to M ~ 0.2.
Eddies are shed past the upper incisors and impinge on the lower lips. As a consequence, a strong turbulent flow develops
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FIGURE 5 Snapshot of A, flow speed profile in (m/s) on the vertical midplane cut; B, flow speed profile on a plane tangent to the tract;
and C, Lighthill's acoustic source term at t = 0.0108 second in kgm~3s~2
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FIGURE 6 Spectrum of the incompressible pressure at a near-field point showing the right f~7/* dependence at the turbulent inertial
subrange

in the cavity between the lower incisors and the lower lip, where most sound sources concentrate. This is shown in
Figure 5C where a snapshot of Lighthill's source term, pp (VQ® V) : (u° ® uo), is presented. The strongest quadrupole
sources can be found in the direct path between the edge of the upper incisors, where flow separation takes place, and
the top side of the lower lips.

To check that the LES is able to capture all turbulent scales down to the inertial subrange, the incompressible pressure
spectrum, E,,, has been plotted for an arbitrary point with coordinates P1 = (0, 0.0205, — 0.012)7, located just in front
of the upper incisors, see Figure 6. The origin of coordinates is placed at the center of the flat section leading to the
realistic vocal tract geometry in Figure 2. According to Kolmogorov's theory for isotropic turbulence, the energy spectrum
at the inertial subrange behaves as E ~ k=3, while the pressure spectrum behaves as E,, ~ k73 (see, eg, Pope®).
Taylor's hypothesis of frozen turbulence allows one to show that the latter also exhibits the same power dependence with
frequency, namely, E,, ~ f~ 713 Note that, at the near field, the assumptions of fully developed isotropic turbulence do
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not apply due to the presence of walls. However, it is observed in Figure 6 that the present CFD simulation manages to
reproduce the behavior of the pressure spectrum at the inertial subrange of a fully developed turbulent flow, therefore
showing that the stabilized FEM formulation, combined with the fine computational mesh, corresponds to a large eddy
simulation approach.

Quantitative details of the flow dynamics simulation are left out of the scope of this paper. The reader is referred to
previous studies,'*? for some works dealing with them. In contrast and as stated in Section 1, few papers seem to exist
reporting numerical results on the aeroacoustics of /s/. Therefore, this will be the focus of the next subsections and the
main output from this work.

3.2 | Incident and diffracted sound contributions to the total acoustic field

The quadrupole sources depicted in Figure 5B directly radiate sound which propagates outside the mouth. The emitted
sound is modulated by the speech articulators, and in particular, that diffracted by the upper incisors is believed to be the
predominant contributor to the acoustic far field.®* However, it will be shown that the incident sound component cannot
be neglected for points in the vicinity of the mouth.

The numerical strategy in Section 2.2 has been applied to compute the contributions from the incident and diffracted
sound. For illustrative purposes, however, before proceeding with a quantitative analysis of the results, we present a

FIGURE 7 A, Total acoustic pressure isosurfaces and B, midcut showing diffracted pressure wavefronts. Units in Pa



12 of 17 Wl LEY PONT ET AL.

snapshot of the spherical acoustic wavefronts emanating from the mouth in Figure 7A, whereas a midcut showing the
propagation of the acoustic waves resulting from the incisors’ diffraction is detailed in Figure 7B.

Figures 8 and 9 contain the main outputs of the simulation. In Figure 8, we present time occurrences of the acoustic
pressure at two points located at different distances from the mouth exit. The first one is point P1, which is affected by
the flow emanating from the mouth and was already introduced in the previous Section 3.2. The second one, P5, is not
influenced by the flow and is placed at P5 = (0,0.035, —0.085)" (see Figure 2). Figure 8A plots the incident and diffracted
contributions to point P1 using Lighthill's acoustic analogy. As known, Lighthill's analogy is not valid for points in the
source region so the strong fluctuations from the incident contribution in Figure 8A (dashed blue line) correspond to
pseudosound rather than to acoustic fluctuations. These are one order of magnitude higher than the acoustic contribution
from the incisors' diffraction (red continuous line). The contributions for point P5 are presented in Figure 8B. In this case,
Lighthill's acoustic analogy is perfectly valid to compute the generated aerodynamic acoustic pressure. As observed, at
P5, the acoustic pressure from the diffracted component is clearly higher than that provided by the direct turbulent flow
contribution. In Figure 8C, a comparison is presented between the contribution of the incisors’ diffraction to point P1
(dashed blue line), already plotted in Figure 8A, and the total acoustic pressure (continuous red line) computed at the
same point with the acoustic analogy in Roger,* instead of Lighthill's one. Both contributions have amplitudes of the
same order showing that the analogy in Equation 3 is capable of filtering the pseudosound and extracting the acoustic
component from the flow pressure fluctuations. When evaluated at a point outside the acoustic source region like P5,
Lighthill's analogy in Equation 1a and the analogy in Equation 3 should yield almost the same results. This is what is
observed in Figure 8D where the time evolution for the total acoustic pressure at P5 using both analogies is plotted. The
two curves in the figure show very similar trends in terms of amplitude and phase.
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FIGURE 8 Time evolution of the acoustic pressure. A, Incident pseudosound (dashed blue) and diffracted (continuous red) components at
the near-field point P1 from Lighthill's analogy; B, incident turbulent (dashed blue) and incisor diffracted (continuous red) contributions to
the far-field point P5; C, incisors' diffracted contribution using Lighthill's analogy (dashed blue) versus total acoustic pressure (continuous
red) using the analogy in Roger® at the near field; and D, total acoustic pressure at the far field using Lighthill's analogy (dashed blue) and
the analogy in Roger3 (continuous red)
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FIGURE 9 Spectra of the incident, diffracted, and total components of the acoustic pressure at the far field. A, Point P2; B, point P3; C,
point P4; and D, point P5

On the other hand, the spectra in decibel (ref. 2 x 107> Pa) at four points well separated from the flow exiting the mouth
are plotted in Figure 9. Figure 9A-D respectively corresponds to the following points: P2 = (—0.075,0.035, —0.0125)T,
P3 = (0.075,0.035, —0.0125)"T, P4 = (0,0.035,0.06)7, and P5, see Figure 2.

The figures contain the total acoustic pressure at these points, together with the separate contributions from the incident
aerodynamic noise and from the sound diffracted by the incisors. As regards the total acoustic pressure, very similar
tendencies can be appreciated in all figures. The spectra first decrease with frequency and exhibit a dip close to 2 kHz;
then they increase linearly showing two marked peaks close to 9 and 10 kHz and finally decrease again with frequency.
In what concerns the contributions, it can be checked that in the range up to 2 kHz, the incident component clearly
dominates. The size of the incisors is small compared with the acoustic wavelengths at those frequencies so diffraction
is not so important. However, as the frequency increases, the situation changes and both the incident and diffracted
components contribute almost the same from 2 to approximately 8 kHz, with a slight predominance of the former. Above
approximately 8 kHz, the incident contribution begins to decay and the spectra become mostly driven by the diffracted
component. The diffracted sound is of a dipolar nature and radiates more efficiently than the quadrupolar noise. At several
wavelengths from the incisors, the dipolar component will be responsible of the overall sound.®

Another remarkable result from Figure 9 is that the two peaks close to 9 and 10 kHz are essentially captured by the
diffracted component of the acoustic pressure, for which they must be attributed to the influence of the upper incisors.
This conclusion is supported by Yoshinaga et al,'* where a monopole source is placed in the incisors gap near the upper
incisors of a simplified vocal tract geometry for reproducing the characteristic spectral shape of the fricative /s/, while
accounting for the propagation of higher-order acoustic modes.

3.3 | Comparison with measurements in literature

The spectra for the total acoustic pressure in Figure 9A-D basically exhibit the same spectral trends as those described in
the Introduction of Nozaki et al,*> which correspond to experimental recordings obtained with a vocal tract mechanical
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FIGURE 10 Welch averaged power spectral density level at point P3. Simulation versus experimental data in Nozaki et al? (different
boundary and initial conditions were used in simulations and experiments)

replica very similar to that used in our simulations. The level of the Welch averaged power spectral density at P3 has been
plotted, after proper scaling, in Figure 10 and compared with that in Nozaki et al.? Even though the initial and boundary
conditions were different in the computations and experiments, the numerical simulation is able to reproduce all relevant
characteristics of the acoustic spectrum in Nozaki et al*: The lowest amplitude is found at approximately 2 kHz after a
steep fall, which is followed by a sudden growth up to a plateau around 6 kHz. Beyond this region, the main peak is found
at 10 kHz, and for higher frequencies, the slope becomes negative. Moreover, the amplitude range between the peak and
the valley frequencies is approximately 30 dB in both cases. The essentials of sibilant /s/ (see Jesus and Shadle*) are thus
well recovered, namely, the dip at mid-frequencies followed by a positive spectral slope, the frequency position of the
spectral peaks and the dynamic amplitude. More involved comparisons with experiments, like the directivity patterns in
Yoshinaga et al.®, are left for future developments.

4 | CONCLUSIONS

In this work, a large-scale numerical simulation of the aeroacoustics of a single example of sibilant fricative /s/ has been
carried out. Lighthill's acoustic analogy and an analogy that allows filtering pseudosound to some extent at the source
region have been implemented. A stabilized FEM that acts as an implicit large eddy simulation model has been used to
solve the incompressible Navier-Stokes equations. The acoustic field has been resolved resorting to a splitting strategy
that allows one to distinguish the acoustic contribution of the diffracted sound by the upper incisors from the incident
one, in a single computational run.

The spectra from the contributions to the total acoustic pressure at points located close to the mouth exit (yet out of the
flow wake) reveal a significant different behavior depending on the frequency range. At the lowest side of the spectrum, the
acoustic pressure level decreases and the incident sound directly dominates. This is the case up to approximately 2 kHz.
From approximately 2 to approximately 8 to 9 kHz, the level strongly increases and the contributions from the incident
sound and its diffraction by the upper incisors are very similar. At higher frequencies, the diffracted sound becomes
dominant and the shape of the upper teeth region seems to be physically responsible for the peaks in that frequency
range. This finding is expected to impact speech production studies, since it provides a potential explanation for spectral
features up to 12 kHz. Though one should bear in mind that the results reported in this work correspond to a single vocal
tract geometry extracted from a subject while uttering a particular realization of /s/ and therefore lack of general validity,
comparisons with subject recordings in the specialized literature seem to confirm the main trends of the obtained results.
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