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a b s t r a c t 

The two-dimensional Helmholtz differential equation governs vibrational problems for a 

thin membrane and is therefore well studied. Analytical solutions are limited to particular 

domain shapes, so that in general numerical methods are used when an arbitrary domain 

is considered. In this paper, a quasi-analytical solution is proposed, suitable to be applied 

to an arbitrary domain shape. Concretely, the Helmholtz equation is transformed to ac- 

count for a conformal map between the shape of the physical domain and the unit disk as 

canonical domain. This way, the transformed Helmholtz equation is solved exploiting well 

known analytical solutions for a circular domain and the solution in the physical domain 

is obtained by applying the conformal map. The quasi-analytical approach is compared to 

analytical solutions for the case of a circular, elliptic and squared domain. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

The reduced Helmholtz equation is an elliptic differential equation allowing to describe physical phenomena related to

oscillatory problems. As such, it is a classical problem for diverse fields of physics and engineering such as vibration me-

chanics, electro-magnetics, acoustics or quantum mechanics [1–3] . Solution of the two-dimensional (2D) Helmholtz equation

allows to identify vibration modes for a two-dimensional domain. Analytical solutions are limited to domains with a partic-

ular shape such as a rectangle or circle [2,4] . In general, solving this differential equation relies on numerical methods, see

e.g. [5–9] . 

In the current work, a quasi-analytical solution of the two-dimensional Helmholtz equation is sought. A quasi-analytical

method is preferred when a computationally low-cost solution is of interest or when an analytical model approach is pre-

ferred. 

In the following, the quasi-analytical approach is outlined and obtained solutions are compared with analytical solutions

for a circular, elliptic and squared domain. 

2. Transformed Helmholtz equation 

The two-dimensional (2D) spatial Helmholtz equation in Cartesian coordinates for P ( x, y ) is defined as: 

∂ 2 P 

∂x 2 
+ 

∂ 2 P 

∂y 2 
+ α2 P = 0 , (1) 
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where ( x, y ) corresponds to the two-dimensional physical plane and α indicates the wavenumber. Solution of (1) is sought

at the interior of a region D bounded by a closed curve C. Moreover, we consider hard wall boundaries so that Neumann

boundary condition applies on the boundary C: 

∂P 

∂ n 

∣∣∣∣
C 

= 0 , (2)

with n denoting the normal to boundary C. 

The Helmholtz Eq. (1) is then expressed as function of complex variable w = x + ıy and its complex conjugate w = x − ıy .

The Laplace operator becomes: 

dw = dx + ıdy and 

∂ 2 

∂x 2 
+ 

∂ 2 

∂y 2 
= 4 

∂ 2 

∂ w∂ w 

, (3)

so that the expression of the Helmholtz equation in the (w, w ) plane is given as: 

∂ 2 P 

∂ w∂ w 

+ 

1 

4 

α2 P = 0 . (4)

In order to solve (4) quasi-analytically, the physical (w, w ) plane is mapped to the canonical plane introducing mapping

function 

w = f (s ) , (5)

with s = u + ı v and s = u − ı v again its complex conjugate. Consequently, dw = f ′ (s ) ds holds , corresponding to an expansion

of factor | f ′ ( s )| and a rotation with angle arg ( f ′ (s )) . The Laplace operator in the physical plane (3) is in canonical plane (s, ̄s )

expressed as: 

4 

∂ 2 

∂ w∂ w 

= 4 

1 

f ′ (s ) f ′ (s ) 

∂ 2 

∂ s∂ s 
. (6)

Since f ′ (s ) f ′ (s ) = | f ′ (s ) | 2 holds, the transformed Helmholtz equation in the canonical plane is then written as: 

∂ 2 P 

∂ s∂ s 
+ 

| f ′ (s ) | 2 
4 

α2 P = 0 . (7)

Instead of solving the original Eq. (1) , the transformed Eq. (7) is solved by rewriting it as: 

∂ 2 P 

∂ s∂ s 
−

(
ıα

2 

)2 

f ′ (s ) f ′ (s ) P = 0 , (8)

and applying separation of variables P = P 1 (s ) P 2 ( ̄s ) . This results in 

P 1 
′ P 2 ′ −

(
ıα

2 

)2 

f ′ (s ) f ′ (s ) P 1 P 2 = 0 , (9)

and therefore in two first order differential equations where τ denotes the separation constant: 

P 1 
′ −

(
ıα

2 

)
τ f ′ (s ) P 1 = 0 , 

P 2 
′ −

(
ıα

2 

)
1 

τ
f ′ (s ) P 2 = 0 . (10)

Solutions for P 1 ( s ) and P 2 ( ̄s ) are then of the form 

P 1 = c 1 e 
ıτ

α

2 

f (s ) 
, 

P 2 = c 2 e 
ı 
1 

τ

α

2 

f (s ) 
. (11)

The general solution of (7) is then given as a linear combination of the products of P 1 and P 2 corresponding to various

values of τ [10] : 

P (s, ̄s ) = 

∫ 
W 

A (τ ) e ıα[ τ f (s )+ f (s ) /τ ] 1 2 dτ, (12)

with W any path in the τ -space which makes the expression convergent [10,11] . Let us further put τ = exp (−ıη) and f (s ) =
| f (s ) | exp (ıχ) with η ∈ C a complex number, norm | f | and χ denoting the phase angle of f ( s ). Substituting these notations

in (12) and denoting κ = η − χ − π
2 results in 

P (s, ̄s ) = −
∫ 

A (e −ıη) e −ıα| f | sin (κ) e −ıκe −ıχ dκ. (13)

W 
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Introducing arbitrary constants a m 

with m ∈ Z and exploiting periodicity yields 

P (s, ̄s ) = 

+ ∞ ∑ 

m = −∞ 

a m 

e ımχ

∫ 
W 

e ımκ−ıα| f | sin (κ) dκ. (14) 

This expression can be simplified introducing H m 

(α · | f | ) = 

∫ 
W 

e ımκ−ıα| f | sin (κ) dκ: 

P (s, ̄s ) = 

+ ∞ ∑ 

m = −∞ 

a m 

e ımχ H m 

(α · | f | ) , (15) 

which using the definition of χ becomes 

P (s, ̄s ) = 

+ ∞ ∑ 

m = −∞ 

a m 

H m 

(α · | f | ) 
[

f (s ) 

| f (s ) | 
]m 

. (16) 

Eq. (16) provides the general solution of the transformed two-dimensional spatial Helmholtz equation. 

3. Solution of transformed Helmholtz equation using conformal mapping 

When the unit disk is taken as canonical plane, (16) can be formulated using cylindrical functions as H m 

(α · | f | ) = J m 

(α ·
| f | ) , with J m 

denoting Bessel function of the first kind with order m and with mapping function α · | f | as its argument.

From hard wall boundary condition (2) and general solution (16) follows then that: 

∂ J m 

(α · | f | ) 
∂ n 

∣∣∣
C 

= 0 , (17) 

holds, which can only be satisfied for discrete values corresponding to the roots of the derivative of Bessel function of

order m so that α = αml with l = 0 , 1 , 2 , . . . The general solution of the transformed Helmholtz equation on the unit disk

(16) becomes: 

P (s, ̄s ) = 

+ ∞ ∑ 

m = −∞ 

a m 

J m 

(αml · | f | ) 
[

f (s ) 

| f (s ) | 
]m 

, (18) 

with l = 0 , 1 , 2 , . . . This way (16) can be solved once mapping function f is determined. In the following Section 4 , the

approach is applied to domains for which an analytical solution of the 2D Helmholtz equation is known. 

4. Application to a circular, elliptic and squared domain 

In the following, we apply the approach outlined in Section 3 to physical domain shapes, for which a mapping function

(5) can be formulated so that solutions of (18) can be compared with well known analytical solutions of the Helmholtz

equation such as on the interior of a circular, elliptic or squared domain [2] . Wavenumbers αm, l are obtained from (17) so

that associated cut-off frequencies are obtained using the relationship 

f m,l = 

αm,l · c 

2 π
, (19) 

so that for given wave velocity c , cut-off frequencies are determined as: 

f m,l = 

χm,l · c 

2 π · | f (s ) | 
∣∣∣
C 
, (20) 

with χm,l = αm,l · | f (s ) | C denoting zeros of the derivative of the Bessel function of order m on the boundary of the physical

domain as expressed by (20) . Zero values are well studied and can be obtained in several ways, from tables, using recursive

formulas or iteratively using Newton–Raphson as applied here [10,12,13] . Except for (m, l) = (0 , 0) for which χ0 , 0 = 0 , values

χm, l > 1 as illustrated in Fig. 1 where χm, l is plotted in increasing order. 

4.1. Circular physical domain 

When the physical domain is the interior of a circle with radius R > 0, the conformal mapping function w = f (s ) is

expressed as w = R × s . When polar coordinates ( ρ , θ ) are used to describe the unit circle in the canonical plane, i.e. s =
ρ exp (ıθ ) , solution (18) becomes: 

P (s, ̄s ) = 

+ ∞ ∑ 

m = −∞ 

a m 

J m 

(αml · R · ρ) e ımθ , (21) 

and associated cut-off frequencies (20) yield: 

f m,l = 

χm,l · c 

2 πR 

, (22) 

matching analytical values [2] . 

Resulting solutions mapped on the circle with radius R = 12 . 5 mm are illustrated in Fig. 2 . 
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Fig. 1. Illustration of zeros χm, l of the derivative of the Bessel function sorted in increasing order. 

Fig. 2. Illustration of 2D Helmholtz equation for a circular domain with radius R = 12 . 5 mm: (a) solution for (m, l) = (2 , 2) and (b) sorted cut-off frequen- 

cies f m, l for wave velocity c = 344 m/s from (20) (quasi-anal, ◦) and from (22) (anal, + ). 

 

 

 

 

 

4.2. Elliptic physical domain 

When the physical domain is the interior of an ellipse with major semi-axis a and minor semi-axis b ( a ≥ b > 0), the

common Joukowski function [14] provides a conformal mapping function w = f (s ) as: 

w = 

1 

2 

ρ

(
R e ıθ + 

λ2 

R e ıθ

)
, (23)

= 

1 

2 

ρ

(
R + 

λ2 

R 

)
cos θ + ı 

1 

2 

ρ

(
R − λ2 

R 

)
sin θ, (24)

with parameters (λ, R ) are directly derived from the semi-axes ( a, b ) of the ellipse as: R = a + b > 0 and λ2 = a 2 − b 2 and

( ρ , θ ) corresponds again to polar coordinates used to describe the unit disk in the canonical plane. Note that λ indicates

the focal distance of the ellipse and that λ2 < R follows from a ≥ b > 0. 
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Fig. 3. Illustration of 2D Helmholtz equation for an elliptic domain with major semi-axis a = 18 . 8 mm and minor semi-axis b = 6 . 2 mm: (a) solution for 

(m, l) = (2 , 2) and (b) sorted cut-off frequencies f m, l for wave velocity c = 344 m/s from (20) (quasi-anal, ◦), from (26) with βel = 0 . 7 (approx, �) and from 

(27) (anal, + ). 

 

 

 

 

 

 

 

Solution (18) is then expressed as: 

P (s, ̄s ) = 

+ ∞ ∑ 

m = −∞ 

a m 

J m 

( 

αml ·
1 

2 

(
R 

2 + 

λ4 

R 

2 
+ 2 λ2 cos (2 θ ) 

)1 / 2 

· ρ
) 

·

⎡ 

⎢ ⎢ ⎢ ⎣ 

R e ıθ + 

λ2 

R 

e −ıθ(
R 

2 + 

λ4 

R 

2 
+ 2 λ2 cos (2 θ ) 

)1 / 2 

⎤ 

⎥ ⎥ ⎥ ⎦ 

m 

, (25) 

and associated cut-off frequencies (20) are approximated as: 

f m,l ≈
χm,l · c 

πβel R 

, (26) 

where R / 2 corresponds to the mean value between min (| f | C ) = 

1 
2 

(
R − λ2 

R 

)
and max (| f | C ) = 

1 
2 

(
R + 

λ2 

R 

)
and βel ( b / a ) de-

notes a proportionality coefficient whose value depends on the aspect ratio of the semi-axes of the ellipse b / a . 

Analytical values of the cut-off frequencies for the elliptic domain are given as [15–17] : 

f p,r = 

c 

π

√ 

q p,r 

λ2 
, (27) 

with q p, r the r th zero of the radial or modified Mathieu function of order p . 

Solutions mapped on an elliptic domain with major semi-axis a = 18 . 8 mm and minor semi-axis b = 6 . 2 mm, i.e. b/a =
0 . 3 , are illustrated in Fig. 3 . Sorted cut-off frequencies estimated using (26) with βel = 0 . 7 are on average within 4% of

analytical values obtained using (27) . However, the accuracy of the approximation depends on the chosen value of βel .

This is illustrated in Fig. 4 (a) where the mean error 
f m, l of the 10 lowest approximated cut-off frequencies with respect

to analytical values is plotted as a function of semi-axes aspect ratio b / a . When a single βel -value is used regardless of

the semi-axes ratio a minimum error is indeed observed as illustrated for βel = 0 . 7 and βel = 0 . 8 in Fig. 4 (a). When βel is
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Fig. 4. (a) Mean error 
f m, l ( b / a ) of approximated (26) compared to analytical (27) sorted cut-off frequencies for different βel . (b) βel ( b / a ) minimizing 


f m, l ( b / a ) < 1%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

optimized as a function of the semi-axes ratio b / a , the error is less than 4% for the assessed range of aspect ratios 0.05 <

b / a < 1. 

Optimized βel ( b / a ) values are plotted in Fig. 4 (b). Optimal values 0.3 < βel < 0.9 increase with aspect ratio b / a . Moreover,

for 0.3 < b / a < 1, the range of optimal βel values is comprised within 0.7 < βel < 0.9, so that when βel = 0 . 8 is used within

this range (0.3 < b / a < 1) the error ( Fig. 4 (a)) remains limited ( < 10%) whereas outside this range the error increases rapidly

(up to more than 40%). Optimal βel ( b / a ) shown in Fig. 4 (b) can be fitted so that cut-off frequencies can be approximated

(Fig. 4 (a)) to within 4% of analytical values (27) for the lowest 10 cut-off frequencies and to within 15% thereafter. Quasi-

analytical cut-off frequencies (20) are estimated to within 5% of analytical values (27) . 

4.3. Squared physical domain 

When the physical domain is the interior of a square with side length 2 a > 0, i.e. domain [ −a, a ] × [ −a, a ] , the following

conformal map w = f (s ) is applied [18] : 

w = 

[
� 

(
−1 − ı 

K e 
F 

(
cos −1 

(
1 + ı √ 

2 

s 

))
, 

1 √ 

2 

)
+ 1 

]
· a + ı 

[

 

(
−1 − ı 

K e 
F 

(
cos −1 

(
1 + ı √ 

2 

s 

))
, 

1 √ 

2 

)
− 1 

]
· a, (28)

with Legendre elliptic integral with modulus k = 1 / 
√ 

2 

F (φ, k ) = 

∫ φ

0 

dt √ 

1 − k 2 sin 

2 
t 
. (29)

and K e ≈ 1.854 the value of the complete integral with same modulus. Associated cut-off frequencies (20) are approximated

as: 

f m,l ≈
χm,l · c 

2 πaβsq 
, (30)

with f (s ) | C ≈ a · βsq and βsq = 1 . 2 taken as the mean value between min (| f | C /a ) = 1 and max (| f | C /a ) = 

√ 

2 . 

Analytical values of the cut-off frequencies for the square yield [2] 

f p,r = 

c 

4 a 

√ 

p 2 + r 2 . (31)

Resulting solutions mapped on a squared domain are illustrated in Fig. 5 . Approximated cut-off frequencies (30) and

quasi- analytical estimations (20) are on average respectively within 4% and 8% of analytical values (31) . 

5. Conclusion 

A quasi-analytical method to solve the two-dimensional spatial Helmholtz equation is proposed and applied to a circular,

squared and elliptic physical domain. It is shown that the first 30 modal cut-off frequencies can be estimated using the

quasi-analytical approach. Compared to analytical values, the estimation is exact for a circular domain and has a mean ac-

curacy to within 5% for the elliptic domain and to within 8% for the squared domain for the lowest 29 cut-off frequencies.

Moreover, for the squared and elliptic domain an approximation of cut-off frequencies is given which has compared to ana-

lytical values a mean accuracy to within 4% for the elliptic domain and to within 5% for the squared domain for the lowest

10 cut-off frequencies. The analytical expression for a squared domain is straightforward so that the given approximation

can be considered superfluous. In the case of an elliptic domain, the proposed approximation provides a straightforward

estimation of the first cut-off frequencies avoiding the use of cumbersome Mathieu functions involved in the analytical ex-

pression. The proposed approach can be applied to two-dimensional domains with a different boundary shape using e.g. the

Schwarz–Christoffel transformation to map the unit disk to the domain in the physical plane. 
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Fig. 5. Illustration of 2D Helmholtz equation for a squared domain with half-side length a = 9 . 8 mm: (a) solution for (m, l) = (2 , 2) and (b) sorted cut-off

frequencies f m, l for wave velocity c = 344 m/s from (20) (quasi-anal, ◦), from (30) (approx, �) and from (31) (anal, + ). 
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