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A B S T R A C T

A-priori knowledge of the uni-axial stress–strain behaviour of molded silicone multi-layer composite vocal
folds replicas would benefit their structural design and favour their usage in physical studies of voiced speech
sound production. Therefore, recently a model approach of the linear and continuous non-linear stress–strain
behaviour of silicone composites is validated, for which the generic parameters are shown to depend only
on the effective low-strain Young’s modulus of the homogenised composite. Whereas previous work focused
on extensive model validation in terms of layer’s stacking and composition, in this work the model approach
and uni-axial tension testing are used for the stress–strain characterisation of six molded silicone composite
specimens derived from three vocal fold replicas. For each replica, measured and modelled effective low-strain
Young’s moduli are determined, the non-linear behaviour is assessed and a criterion is proposed to identify
the onset strain and effective Young’s modulus associated with a linear high-strain region and thus to extend
the model approach to the high-strain region. It is concluded that the non-linear stress–strain behaviour of
composite specimens can be predicted, solely based on the knowledge – either measured or modelled – of
the effective low-strain Young’s modulus of the equivalent homogenised composites. Consequently, uni-axial
stress–strain behaviour can be taken into account for the structural design of silicone composites and associated
multi-layer silicone vocal fold replicas.
1. Introduction

Human voiced speech sound production results from the vocal folds
(VFs) auto-oscillation following a fluid–structure interaction at the
glottis between airflow coming from the lungs and deformable VFs tis-
sues (Rosen and Simpson, 2008; O’Shaughnessy, 1987). The positioning
of the left and right VF on either side of the glottis is illustrated in
Fig. 1(a). Despite the small VFs dimensions of only a few centimeters
at most (O’Shaughnessy, 1987; Riede and Brown, 2013; Mobashir
et al., 2018), the anatomical structure of a normal human VF is com-
plex (Rosen and Simpson, 2008). It is often represented as consisting of
superimposed layers (Rosen and Simpson, 2008). This VF representa-
tion, schematically depicted in Fig. 1(b), motivates deformable multi-
layer (ML) silicone molded vocal fold replicas aiming to maintain, up
to some degree, the anatomical multi-layer representation of a human
VF, which consists of overlapping muscle (Mu), vocal ligament (Li),
superficial (Su) and cover epithelium (Ep) layers. The elasticity of each
molded silicone layer matches the order of magnitude observed for the
corresponding layer in human passive soft VF tissues (as e.g. detailed
in Table 2 of Section 2.1). Nevertheless, as the layers elasticity varies
between replicas, the overall stress–strain behaviour of molded silicone
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replicas is likely to vary. So far however, their stress–strain behaviour
is not a-priori known, instead it needs to be measured once replicas are
molded. As the molding process is tedious and the resulting overall elas-
ticity unknown, this limits the usage of silicone molded ML replicas in
physical studies of the VFs auto-oscillation. This is particularly regret-
table considering their potential for representing the multi-layer vocal
folds structure. A-priori characterisation of the stress–strain behaviour
of multi-layer silicone replicas would contribute to overcome this limi-
tation and thus favour systematic physical studies of the impact of the
VFs structure, in terms of layer properties, on their auto-oscillation in
order to account for the variation of the VF’s elasticity due to e.g. intra-
and inter-speaker diversity (voice type, morphology, aging, breathing
etc. Riede and Brown, 2013) or structural abnormalities (scar, nodule,
carcinoma, cyst etc. Rosen and Simpson, 2008).

Steady vocal folds auto-oscillation is generally associated with small
deformations and thus linear elasticity. Nevertheless, large deforma-
tions associated with non-linear elasticity can occur during abnormal
auto-oscillation or during vocal folds adduction or abduction prior or
following auto-oscillation. To encourage the structural design of multi-
layer silicone replicas, an analytical elastic model approach of the
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Fig. 1. Schematic overviews: (a) right and left VFs positioning and overall properties — dimensions 𝐿𝑥, 𝐿𝑦, 𝐿𝑧, mass 𝑚𝑉 𝐹 and volume 𝑉 𝐹 , auto-oscillation along the 𝑥-direction
(b) multi-layer representation of the anatomical structure for a left VF.
low-strain linear (strains up to ≈0.3 Ahmad et al., 2021, 2022) and con-
tinuous non-linear (strains up to 1.55 Ahmad et al., 2023) stress–strain
behaviour of silicone multi-layer composites was recently proposed.
Models are obtained by considering equivalent homogenised compos-
ites as a function of their layers properties (dimensions, low-strain
Young’s modulus  and stacking orientation). The model approach was
extensively validated from uni-axial tension tests on multi-layer silicone
bone-shaped specimens with up to seven layers in the test section
(Fig. 2(b)). As for single layer specimens, the observed deformation for
composite specimens was elastic and no plastic deformation was ob-
served following unloading. Molded silicone composites in Ahmad et al.
(2021, 2022, 2023) were designed in order to assure model validation
and not to represent the composition of multi-layer silicone replicas.
The aim of this work is thus to study the stress–strain behaviour of
multi-layer silicone composite specimens derived from three commonly
used silicone ML vocal folds replicas using uni-axial tension tests and
the analytical model approach. In case that the model approach allows
an a-priori measurement-free estimation of the stress–strain behaviour,
it can be applied to composites representing other silicone VF replicas
so that their stress–strain behaviour can be compared. The current
study aims thus not just at evidence based modelling and character-
isation of the stress–strain behaviour of replica-based specimens, but
is also a first necessary step towards the a-priori structural design of
multi-layer silicone VF replicas in terms of their stress–strain behaviour.
Eventually, this contributes to the development of systematic physical
studies of the auto-oscillation of deformable multi-layer silicone VFs
replicas with normal or abnormal VFs structure. In the long term the
prospect of systematic studies might contribute to predict the effect of
the VF structure on auto-oscillation features related to voice quality and
on the planning of clinical interventions on the VFs structure.

Three molded ML silicone VFs replicas (M5, MRI and EPI) are
detailed in Section 2.1. In Section 2.2, six ML composite silicone bone-
shaped specimens are derived from these three vocal folds replicas.
Experimental stress–strain data, appropriate models and their parame-
ter fitting is outlined in Section 3. The prediction of model parameters
is then outlined in Section 4. Measured and predicted parameter values
and the associated stress–strain curves are discussed in Section 5. The
conclusion is formulated in Section 6.

2. From three ML silicone replicas to six ML silicone specimens

2.1. Three ML silicone replicas: M5, MRI and EPI

Deformable multi-layer (ML) silicone vocal folds replicas aim to
mimic, up to some degree, the anatomical multi-layer representation
(Ep, Su, Li, Mu) of a human VF depicted in Fig. 1(b). In literature,
two-layer (Su and Mu) (Scherer et al., 2001), three-layer (Ep, Su and
Mu) (Tokuda and Shimamura, 2017; Pickup and Thomson, 2010) and
four-layer (Ep, Su, Li and Mu) (Murray and Thomson, 2012) VF replicas
are proposed. Concretely, replicas used in Tokuda and Shimamura
(2017), Bouvet et al. (2020b, 2021) and Van Hirtum et al. (2022)
2

Fig. 2. Schematic overviews: (a) multi-layer silicone VF replicas with dimensions (in
mm) 𝐿𝑥, 𝐿𝑧: two-layer M5, three-layer MRI and four-layer EPI. Single layer dimensions
along the 𝑥-direction 𝑙𝑥 are indicated between round brackets (in mm). (b) Bone-shaped
specimen with test section dimensions (in mm) and volume 𝑡𝑒𝑠𝑡. The force  direction
(arrows) for uni-axial stress testing is indicated.

Table 1
Overall properties for M5, MRI and EPI replicas and values reported for a male adult
(Hirano et al., 1983; Plant et al., 2004; Mobashir et al., 2018; Alexander et al., 2021)
and using soft tissue density 1.03 g/cm3 (Riede and Brown, 2013; Titze, 2011): right–
left length 𝐿𝑥, posterior-anterior length 𝐿𝑦, inferior–superior length 𝐿𝑧, volume 𝑉 𝐹
and mass 𝑚𝑉 𝐹 .

𝐿𝑥 [mm] 𝐿𝑦 [mm] 𝐿𝑧 [mm] 𝑉 𝐹 [mm3] 𝑚𝑉 𝐹 [g]

M5 7.9 17.0 10.7 1025 0.96
MRI 13.1 18.0 10.0 1707 1.57
EPI 8.5 17.0 10.2 1079 1.01

Human 7–8 15–25 4–8 610–830 0.61–0.82

– conventionally labelled M5 (two-layer), MRI (three-layer) and EPI
(four-layer) – are schematically depicted in Fig. 2(a). Single layer
dimensions 𝑙𝑥 (in mm) along the main auto-oscillation direction, i.e. the
𝑥-direction, are given between round brackets. Overall replica proper-
ties shown in Fig. 1(a) are summarised in Table 1 indicating right–left
length 𝐿𝑥, posterior–anterior length 𝐿𝑦, inferior–superior length 𝐿𝑧,
total mass 𝑚𝑉 𝐹 and volume 𝑉 𝐹 . As a reference, typical values reported
for the VF of a male adult are given as well (Hirano et al., 1983; Plant
et al., 2004; Mobashir et al., 2018; Alexander et al., 2021; Riede and
Brown, 2013; Titze, 2011).

The low-strain elastic Young’s modulus  of each layer of these
VF replicas varies in the range up to 65 kPa in order to approximate
elasticity values associated with human VFs layers, i.e. muscle layer
8–29 kPa, ligament layer 10–45 kPa, superficial layer 2–9 kPa and
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Table 2
Single layer properties for M5, MRI and EPI replicas (Bouvet et al., 2020b; Bouvet, 2019; Ahmad et al., 2021): low-strain
Young’s modulus  , normalised layer length 𝑙𝑥∕𝐿𝑥 and normalised volume ∕𝑉 𝐹 .

 [kPa] 𝑙𝑥∕𝐿𝑥 [%] ∕𝑉 𝐹 [%]

Human M5 MRI EPI M5 MRI EPI M5 MRI EPI

Muscle (Mu) 8–29 14.4 4.0 23.4 81.0 76.3 75.2 50.0 68.5 38.1
Ligament (Li) 10–45 – – 4.0 – – 11.8 – – 7.6
Superficial (Su) 2–9 4.0 2.2 2.2 19.0 22.9 11.8 50.0 27.5 50.3
Epithelium (Ep) 40–60 – 64.7 64.7 – 0.8 1.2 – 4.0 4.0
Fig. 3. Molded length-based (subscript 𝐿) and volume-based (subscript 𝑉 ) bone-shaped silicone composites derived from the multi-layer M5, MRI and EPI silicone replicas
(Fig. 2(a)): (a) two-layer (𝑛 = 2) II𝑀5,𝐿 and II𝑀5,𝑉 , (b) three-layer (𝑛 = 3) III𝑀𝑅𝐼,𝐿 and III𝑀𝑅𝐼,𝑉 , (c) four-layer (𝑛 = 4) IV𝐸𝑃𝐼,𝐿 and IV𝐸𝑃𝐼,𝑉 . Legends specify layer’s low-strain Young’s
modulus 𝑖=1…𝑛 (in kPa) matching the corresponding Muscle-Mu, Ligament-Li, Superficial-Su or Epithelium-Ep layer in Table 2. Layer lengths 𝑙𝑖=1…𝑛 (in mm) are indicated.
epithelium layer 40–60 kPa (Hirano et al., 1983; Alipour and Titze,
1991; Berke and Gerratt, 1993; Min et al., 1995; Chan et al., 2007; Miri,
2014; Zhang et al., 2017; Chhetri et al., 2011). Concretely, all layers
are molded from elastomer silicone mixtures at different mass mix-
ing ratios, i.e. either Thinner-Ecoflex or Thinner-Dragonskin mixtures
(Smooth-On Inc.). The relative mass portion of silicone Thinner is var-
ied up to 8 whereas the relative mass portion of Ecoflex or Dragonskin
is held constant to 2 in accordance with the molding procedure detailed
in Pickup and Thomson (2010), Murray and Thomson (2012), Tokuda
and Shimamura (2017), Bouvet (2019) and Bouvet et al. (2020b). The
low-strain linear Young’s modulus of each silicone mixture is obtained
from uni-axial tension testing on bone-shaped specimens as the one
schematically depicted in Fig. 2(b). In Ahmad et al. (2021, 2022), the
reproducibility of these elastomer silicone mixtures and repeatability
of uni-axial stress–strain measurements at room temperature (21 ±
2 ◦C) was extensively validated for two different uni-axial tension test
methods, i.e. using a mechanical press (Instron 3369 series) and a
developed precision loading setup. Elastic deformation was observed
for all mixtures and no plastic deformation was observed following
unloading. Resulting layer properties for the M5, MRI and EPI replicas
(Fig. 2(a)) are summarised in Table 2 in terms of low-strain Young’s
modulus  , normalised layer length 𝑙𝑥∕𝐿𝑥 along the auto-oscillation
direction and normalised volume ∕𝑉 𝐹 (Bouvet et al., 2020b; Bouvet,
2019; Ahmad et al., 2021). From Table 2 is seen that layer properties
vary considerably between replicas. Considering the low-strain Young’s
modulus, it is seen that although the order of magnitude observed for
passive vocal folds tissues is respected for all layers, the muscle and
superficial layers increase and decrease with 60% and 81% respectively
when comparing the M5 and EPI replicas.

2.2. Six replica-based bone-shaped ML silicone specimens

Six bone-shaped ML silicone specimens, depicted in Fig. 3, are
molded based on the M5, MRI and EPI replicas shown in Fig. 2(a). Each
specimen consists of a beam-shaped test section (length 𝑙 = 80 mm,
width 15 mm, thickness 10 mm and volume 𝑡𝑒𝑠𝑡 = 12 cm3) in between
two clamping ends as depicted in Fig. 2(b). Specimens with 𝑛 layers
(𝑛 ∈ {2, 3, 4}) are designed as two-layer (label II𝑀5 for M5-based, 𝑛 = 2),
three-layer (label III𝑀𝑅𝐼 for MRI-based, 𝑛 = 3) or four-layer (label
IV𝐸𝑃𝐼 for EPI-based, 𝑛 = 4) composites so that each layer has the low-
3

strain Young’s modulus  as indicated in Table 2. All layers are stacked
serially, i.e. perpendicular with respect to the force direction shown
in Fig. 2(b). Consequently, each layer has constant width (15 mm)
and constant height (10 mm). Layer lengths 𝑙𝑖, with layer index 𝑖 =
1… 𝑛, are imposed either so that 𝑙𝑖∕𝑙 matches normalised lengths
𝑙𝑥∕𝐿𝑥 along the main auto-oscillation direction (length-based, subscript
𝐿) or so that 𝑖∕𝑡𝑒𝑠𝑡 matches normalised volumes ∕𝑉 𝐹 (volume-
based, subscript 𝑉 ) as an overall replica property. Table 2 provides an
overview of the corresponding 𝑙𝑥∕𝐿𝑥 and ∕𝑉 𝐹 values for all replica
layers (Mu, Li, Su or Ep). From Fig. 2(a) is seen that the two molded
composites derived from each replica differ considerably in terms of
layer lengths 𝑙𝑖 (measured with a laser transceiver, Panasonic HL-G112-
A-C5, wavelength 655 nm, accuracy 8 μm). Compared to length-based
specimens (upper row in Fig. 3), volume-based specimens (lower row
in Fig. 3) result in decreased lengths of the muscle (Mu) and ligament
(Li) layer and increased lengths of the superficial (Su) and epithelium
(Ep) layers. Molded composites are labelled II𝑀5,𝐿 and II𝑀5,𝑉 for the
M5 replica, III𝑀𝑅𝐼,𝐿 and III𝑀𝑅𝐼,𝑉 for the MRI replica and IV𝐸𝑃𝐼,𝐿 and
IV𝐸𝑃𝐼,𝑉 for the EPI replica. The overall molding accuracy of the layers
yields ±0.72 mm, which is within the range previously reported (Ahmad
et al., 2022).

3. Experimental stress–strain data characterisation

3.1. Stress–strain data from uni-axial tension testing

The stress–strain behaviour of the six molded silicone ML specimens
is measured at room temperature (21±2 ◦C) from uni-axial tension tests
by means of precision loading (Ahmad et al., 2021, 2022). Briefly, the
force–elongation relationship  (𝛥𝑙) along the force direction, indicated
in Fig. 2(b), is measured on vertically placed specimens by fixing the
upper clamping end and adding a known weight 𝑚 (calibrated scale,
Vastar 500G X 0.01G, accuracy 0.01 g) to the lower clamping end. The
weight is incremented with 2.3 ± 1.9 g. The load force  for added
mass 𝑚 is  = 𝑚 ⋅ 𝑔0 with gravitational constant 𝑔0 = 9.81 m∕s2.
For each weight increment, the specimens elongation 𝛥𝑙 is obtained as
𝛥𝑙 =

∑𝑛
𝑖=1 𝛥𝑙𝑖 with 𝛥𝑙𝑖 the measured elongation of each layer (ruler,

accuracy 0.05 mm). Depending on the specimen, the assessed total
elongation varies between 44 mm and 198 mm, corresponding to a total
added weight between 14.5 g and 125.8 g. Measured force–elongation
data are illustrated in Fig. 4(a). As for specimens assessed in Ahmad

et al. (2021, 2022) elastic deformation is observed for all specimens.
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Fig. 4. Examples of uni-axial stress tests data for M5-based specimens II𝑀5,𝐿 (×) and II𝑀5,𝑉 (+): (a) force–elongation data  (𝛥𝑙), (b) area–elongation data (𝛥𝑙) and quadratic
fits 𝑞 (𝛥𝑙) with 𝑅2 = 99% (lines) and (c) stress–strain curves 𝜎𝑡(𝜀𝑡) with best linear fits (lines) to the linear low-strain range 𝜀𝑡 ≤ 0.32 with 𝑅2 > 96% corresponding to measured
low-strain effective Young’s modulus 𝑒𝑓𝑓 = 8.0 kPa for II𝑀5,𝐿 (dashed linear slope) and 𝑒𝑓𝑓 = 7.2 kPa for II𝑀5,𝑉 (full linear slope).
The area–elongation relationship (𝛥𝑙) for each specimen is ob-
tained from measuring the layers midway cross-sectional area per-
pendicular to the force 𝑖 (caliper Vernier, accuracy 0.02 mm). The
cross-sectional area  results from the weighted arithmetic mean as

 =
∑𝑛

𝑖=1(𝑙𝑖 + 𝛥𝑙𝑖)𝑖

𝑙 + 𝛥𝑙
. (1)

The specimens cross-section area  is measured whenever the elon-
gation increment yields 12.6 ± 5.2 mm, corresponding to a weight
increment of 6.0 ± 5.0 g. A quadratic fit (coefficient of determina-
tion 𝑅2 ≥ 98%) is applied to the measured (𝛥𝑙) data for each
specimen resulting in a continuous approximation 𝑞(𝛥𝑙). Measured
area–elongation data (𝛥𝑙) and fitted curves 𝑞(𝛥𝑙) are illustrated in
Fig. 4(b).

Experimental true stress–strain curves 𝜎𝑡(𝜀𝑡) are then obtained from
the instantaneous force–elongation  (𝛥𝑙) and area-elongation curves
𝑞(𝛥𝑙) as

𝜎𝑡 =

𝑞 , (2a)

𝜀𝑡 = ln( 𝑙 + 𝛥𝑙
𝑙

). (2b)

The total elongations measured correspond to the following strain
ranges: 𝜀𝑡 ≤ 1.08 for specimens II𝑀5,𝐿 and II𝑀5,𝑉 , 𝜀𝑡 ≤ 0.49 for
specimens III𝑀𝑅𝐼,𝐿 and III𝑀𝑅𝐼,𝑉 and 𝜀𝑡 ≤ 0.44 for specimens IV𝐸𝑃𝐼,𝐿
and IV𝐸𝑃𝐼,𝑉 .

3.2. Experimental characterisation: best fit stress–strain model parameters

3.2.1. Linear model fitting: low-strain and high-strain Young’s modulus
The effective low-strain elastic Young’s modulus 𝑒𝑓𝑓 of each ML

specimen is obtained experimentally as the slope of the linear best fits
to the measured stress–strain data for strains up to upper low-strain
limit 𝜀𝑙, i.e. the elastic low-strain region 𝜀𝑡 ≤ 𝜀𝑙, in which the stress 𝜎𝑡
is proportional to the strain 𝜀𝑡, so that

𝑒𝑓𝑓 =
𝜎𝑡
𝜀𝑡
, (3)

expressing linear elastic stress–strain behaviour. The upper limit of the
low-strain range for each specimen, summarised in Table 3, is obtained
as the range for which linear fit accuracy 𝑅2 is maximum (Ahmad
et al., 2021, 2022) (𝑅2 ≥ 97% holds). The mean and standard deviation
of the overall upper limit of the linear low-strain region yields 𝜀𝑙 =
0.28 ± 0.03 which corresponds to an elongation of 37 ± 7 mm. This
value is consistent with 𝜀𝑙 = 0.30 ± 0.10 reported in Ahmad et al. (2021)
and 𝜀𝑙 = 0.26 ± 0.02 in Ahmad et al. (2022). Examples of experimental
stress–strain data 𝜎𝑡(𝜀𝑡) and associated linear fits (𝑅2 > 99%) to the
linear low-strain region 𝜀𝑡 ≤ 𝜀𝑙 are illustrated in Fig. 4(c).

Linear stress–strain behaviour can occur again at sufficiently large
strains, such as observed for biological tissues (Fung, 1967, 2010;
Tanaka et al., 2011), corresponding to the linear high-strain range
𝜀𝑁𝐿
𝑡 ≤ 𝜀𝑡, with 𝜀𝑁𝐿

𝑡 denoting the lower limit of the linear high-strain
range and 𝜀𝑙 ≪ 𝜀𝑁𝐿

𝑡 . The same way as outlined for the effective low-
strain elastic Young’s modulus 𝑒𝑓𝑓 , the effective high-strain Young’s
modulus 𝑁𝐿 can be obtained as the slope of the linear best fits to
stress–strain curves in the high strain range.
4

Table 3
Measured elastic low-strain upper limit 𝜀𝑙 .
𝐿-based 𝜀𝑙 𝑉 -based 𝜀𝑙
II𝑀5,𝐿 0.31 II𝑀5,𝑉 0.32
III𝑀𝑅𝐼,𝐿 0.29 III𝑀𝑅𝐼,𝑉 0.25
IV𝐸𝑃𝐼,𝐿 0.25 IV𝐸𝑃𝐼,𝑉 0.26

3.2.2. Non-linear continuous models: best fit two-parameter sets
In Ahmad et al. (2023), measured stress–strain data 𝜎𝑡(𝜀𝑡) for sili-

cone composites are approximated continuously for 𝜀𝑡 ≤ 1.55, covering
the linear low-strain and subsequent non-linear strain range, using
the either an exponential (E) or cubic (C) continuous two-parameter
relationship, which are shown to nearly match for strains up to 1.55
and are given as:

exponential – E: 𝜎𝑡(𝜀𝑡) = 𝐴 (𝑒𝐵 𝜀𝑡 − 1), (4a)

cubic – C: 𝜎𝑡(𝜀𝑡) = 𝑎 𝜀3𝑡 + 𝑏 𝜀𝑡, (4b)

with (𝐴,𝐵) and (𝑎, 𝑏) their respective two-parameter sets. The near
match of both continuous relationships is further confirmed considering
measured stress–strain data for the silicone specimens (Fig. 3) as the
accuracy associated with the best fits obtained by minimising the root
mean square error (rmse in kPa) between fitted and measured stress–
strain data yields 𝑅2 ≥ 99.9% and rmse < 0.3 kPa. Best fits are
illustrated in Fig. 5 for specimens II𝑀5,𝐿 and II𝑀5,𝑉 for the exponential
(Fig. 5(a)) and cubic (Fig. 5(b)) relationship. In the following, curves
obtained with the best fit parameter estimates (suffix -fit) are denoted
E-fit and C-fit for the exponential and cubic relationship, respectively.
Estimated best fit parameters are denoted (𝐴,𝐵 ) for the exponential
and (𝑎, 𝑏̂ ) for the cubic relationship, respectively.

4. Analytical stress–strain model parameter prediction

4.1. Linear low-strain range: predicted effective low-strain Young’s modulus

In Section 3.2.1 is shown that Hooke’s law of linear elastic de-
formation (Eq. (3)) holds in the low-strain range 𝜀𝑡 ≤ 𝜀𝑙. The linear
low-strain stress–strain relationship is thus characterised by the elastic
Young’s modulus. As each specimen consists out of 𝑛 serial stacked
layers, Reuss’s hypothesis (Reuss, 1929) of homogeneous stress can be
applied. This implies that the stress 𝜎𝑡 in an equivalent homogeneous
composite and the stress 𝜎𝑡,𝑖=1…𝑛 in each layer is assumed constant
so that 𝜎𝑡,𝑖=1…𝑛 = 𝜎𝑡. The effective low-strain Young’s modulus of
the equivalent homogeneous composite with length 𝑙 =

∑𝑛
𝑖=1 𝑙𝑖 is

then modelled as the harmonic mean of the layers Young’s moduli 𝑖
weighted with their lengths 𝑙𝑖 as

̂𝑒𝑓𝑓 =
∑𝑛

𝑖=1 𝑙𝑖
∑𝑛

𝑖=1

(

𝑙𝑖
𝑖

) . (5)

This low-strain model of the effective Young’s modulus was extensively
validated (accuracy 2.4 kPa) for multi-layer silicone specimens (Ahmad
et al., 2021, 2022).



European Journal of Mechanics / A Solids 101 (2023) 105062A. Van Hirtum et al.
Fig. 5. Examples of measured stress–strain data for specimens II𝑀5,𝐿 (×) and II𝑀5,𝑉 (+) and non-linear continuous best fits (dashed lines) with 𝑅2 ≥ 99.9% and rmse < 0.3 kPa
using best fit parameters sets of two-parameter relationships: (a) exponential, (b) cubic. Linear low-strain limit 𝜀𝑙 is indicated.
4.2. Linear and non-linear stress–strain range: predicted two-parameter sets

Two-parameter exponential (E) and cubic (C) relationships ex-
pressed in Eq. (4) both hold (Section 3.2.2) for the assessed strain
range comprising the linear low-strain range (𝜀𝑡 ≤ 𝜀𝑙) and the non-
linear strain range beyond (𝜀𝑡 > 𝜀𝑙). In Ahmad et al. (2023) two
generic two-parameter sets were derived using the assumption that
both relationships nearly match for strains in the interval 𝜀𝑡 ≤ 1.55.
The assumption is motivated from the experimental characterisation
and from analytical reasoning in Ahmad et al. (2023) and confirmed
for the measured stress–strain data on the six replica-based specimen in
Section 3.2.2. Generic expressions allow to predict the two-parameter
sets (𝐴,𝐵) for the exponential and (𝑎, 𝑏) for the cubic relationships in
the strain range 𝜀𝑡 ≤ 1.55.

Firstly, generic two-parameter sets are obtained analytically from
an analysis of the exponential and cubic relationships in Eq. (4). The
resulting generic model-based parameter sets (suffix -M) depend on
𝑒𝑓𝑓 as

modelled exponential (𝐴,𝐵) – E-M: (𝑒𝑓𝑓∕2.15, 2.15), (6a)

modelled cubic (𝑎, 𝑏) – C-M: (2.53 𝑒𝑓𝑓 , 𝑒𝑓𝑓 ). (6b)

It is noted that expressions for 𝑎 and 𝐵 satisfy the condition 𝑎 =
1
6𝐵

2(𝑒𝑓𝑓 ). This condition, obtained from a third order Taylor series
expansion of the exponential relationship (Eq. (4)), follows from the
assumption of nearly matching exponential and cubic relationships (Ah-
mad et al., 2023).

Thus, from generic model-based parameter sets in Eq. (6) is seen
that values are either constant (for B) or vary linearly with 𝑒𝑓𝑓 (for A,
a and b). These dependencies are then exploited in Ahmad et al. (2023)
to propose another pair of generic two-parameter sets by imposing
either the linear (for A, a and b) or the constant (for B) relationship
to the exponential and cubic best fit parameters estimated on the
stress–strain data curves of 40 silicone composite specimens (with a
low-strain Young’s modulus up to 65 kPa). The resulting overall generic
approximated parameter sets (suffix -A) are thus either constant or
linearly proportional to 𝑒𝑓𝑓 and are given as:

approximated exponential (𝐴,𝐵) – E-A: (𝑒𝑓𝑓∕3.03, 2.21), (7a)

approximated cubic (𝑎, 𝑏) – C-A: (1.78 𝑒𝑓𝑓 , 0.92 𝑒𝑓𝑓 ). (7b)

Both the generic model-based parameter sets (Eq. (6), suffix -M) and
the generic approximated parameter set (Eq. (7), suffix -A) depend only
on the effective low-strain Young’s modulus 𝑒𝑓𝑓 , which can be either
modelled (Eq. (5)) or obtained experimentally as the slope of stress–
strain data in the low-strain range 𝜀𝑡 ≤ 𝜀𝑙 (Section 3.2.1). Consequently,
for both generic two-parameter sets, the non-linear model approach
as a function of 𝑒𝑓𝑓 reduces to a one-parameter model approach.
Furthermore, for the continuous cubic and exponential relationships
low-strain, it is noted that linear stress–strain behaviour is obtained
from a first order Taylor series expansion (Ahmad et al., 2023). The
low-strain Young’s modulus in terms of the continuous parameters
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is then obtained as the parameter product 𝐴𝐵 and linear parameter
𝑏 for the exponential and the cubic relationship respectively. Thus
concretely, for the generic model-based parameter sets (Eq. (6)) this
yields 𝑏 = 𝑒𝑓𝑓 and 𝐴𝐵 = 𝑒𝑓𝑓 and for the generic approximated
parameter sets (Eq. (7)) this becomes 𝑏 = 0.92 𝑒𝑓𝑓 and 𝐴𝐵 = 0.73 𝑒𝑓𝑓 .

4.3. Linear high-strain range: predicted effective high-strain Young’s modu-
lus

In Ahmad et al. (2023), the effective high-strain Young’s modulus
𝑁𝐿 associated with a linear high-strain range 𝜀𝑁𝐿

𝑡 ≤ 𝜀𝑡 is predicted
by considering the local slope of the continuous exponential and cubic
stress–strain relationships (Eq. (4)). Local slopes are obtained from a
first order expansion of the exponential and cubic relationships at 𝜀𝑁𝐿

𝑡
as:

exponential high-strain 𝑁𝐿: 𝑁𝐿∕𝑒𝑓𝑓 = 𝑒𝐵 𝜀𝑁𝐿
𝑡 , (8a)

cubic high-strain 𝑁𝐿: 𝑁𝐿∕𝑒𝑓𝑓 = 3 𝑘 (𝜀𝑁𝐿
𝑡 )2 + 1, (8b)

with 𝑘 = 𝑎∕𝑒𝑓𝑓 in Eq. (8b). It is found for both the exponential and
cubic stress–strain relationships that 𝑁𝐿 is linearly proportional to
𝑒𝑓𝑓 with ratio 𝑁𝐿∕𝑒𝑓𝑓 (𝜀𝑡) > 1, i.e. greater than one and an increasing
function of the linear high-strain range onset 𝜀𝑁𝐿

𝑡 . For the generic
model-based parameter sets (suffix -M) introduced in Eq. (6) 𝐵 = 2.15
and 𝑘 = 2.53 holds, whereas for the generic approximated parameter
sets (suffix -A) given in Eq. (7) 𝐵 = 2.21 and 𝑘 = 1.78. Thus, for the
generic parameter sets Eq. (9) local slopes are analytically expressed as

for E-M: 𝑁𝐿∕𝑒𝑓𝑓 = 𝑒2.15 𝜀
𝑁𝐿
𝑡 (𝜀𝑁𝐿

𝑡 = 1 ⇒ 𝑁𝐿 = 8.58 𝑒𝑓𝑓 ),
(9a)

for C-M: 𝑁𝐿∕𝑒𝑓𝑓 = 7.59 (𝜀𝑁𝐿
𝑡 )2 + 1 (𝜀𝑁𝐿

𝑡 = 1 ⇒ 𝑁𝐿 = 8.59 𝑒𝑓𝑓 ),
(9b)

for E-A: 𝑁𝐿∕𝑒𝑓𝑓 = 𝑒2.21 𝜀
𝑁𝐿
𝑡 (𝜀𝑁𝐿

𝑡 = 1 ⇒ 𝑁𝐿 = 9.12 𝑒𝑓𝑓 ),
(9c)

for C-A: 𝑁𝐿∕𝑒𝑓𝑓 = 5.34 (𝜀𝑁𝐿
𝑡 )2 + 1 (𝜀𝑁𝐿

𝑡 = 1 ⇒ 𝑁𝐿 = 6.34 𝑒𝑓𝑓 ),
(9d)

where reference expressions for 𝜀𝑁𝐿
𝑡 = 1 are indicated between brack-

ets. For this case (𝜀𝑁𝐿
𝑡 = 1), generic model-based exponential (for E-M)

and cubic (for C-M) parameter sets both result in 𝑁𝐿∕𝑒𝑓𝑓 ≈ 8.58.
Ratios obtained for generic approximated parameter sets are either 6%
greater (for E-A) or 35% smaller (for C-A) than this reference ratio.

5. Stress–strain parameters and curves: measured and predicted

Experimentally fitted (Section 3.2) and predicted (Section 4) model
parameters and resulting stress–strain curves for the three length-based
(II𝑀5,𝐿, III𝑀𝑅𝐼,𝐿, IV𝐸𝑃𝐼,𝐿) and three volume-based (II𝑀5,𝑉 , III𝑀𝑅𝐼,𝑉 ,
IV𝐸𝑃𝐼,𝑉 ) silicone composite specimens depicted in Fig. 3 are quantified,
compared and discussed.
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Table 4
Measured 𝑒𝑓𝑓 and modelled ̂𝑒𝑓𝑓 (Eq. (5)) low-strain Young’s moduli (in kPa).

𝐿-based 𝑒𝑓𝑓 [kPa] ̂𝑒𝑓𝑓 [kPa] 𝑉 -based 𝑒𝑓𝑓 [kPa] ̂𝑒𝑓𝑓 [kPa]

II𝑀5,𝐿 8.0 9.5 II𝑀5,𝑉 7.2 6.2
III𝑀𝑅𝐼,𝐿 5.4 3.4 III𝑀𝑅𝐼,𝑉 4.5 3.3
IV𝐸𝑃𝐼,𝐿 5.7 8.5 IV𝐸𝑃𝐼,𝑉 5.0 3.8

Fig. 6. Low-strain Young’s moduli of length-based (II𝑀5,𝐿, III𝑀𝑅𝐼,𝐿 and IV𝐸𝑃𝐼,𝐿) and
volume-based (II𝑀5,𝑉 , III𝑀𝑅𝐼,𝑉 and IV𝐸𝑃𝐼,𝑉 ) silicone specimens: measured 𝑒𝑓𝑓 (×) and
modelled ̂𝑒𝑓𝑓 using Eq. (5) (∙).

5.1. Low-strain linear elasticity: effective Young’s modulus 𝑒𝑓𝑓 and ̂𝑒𝑓𝑓

Effective low-strain Young’s moduli characterising the linear elastic
low-strain behaviour are measured as outlined in Section 3.2.1 and
modelled using Eq. (5). Measured 𝑒𝑓𝑓 and modelled ̂𝑒𝑓𝑓 for the three
length-based and three volume-based specimens are plotted in Fig. 6.
and summarised in Table 4. All effective low-strain Young’s moduli,
either measured or modelled vary between 3 kPa and 10 kPa. The
absolute difference |𝑒𝑓𝑓 − ̂𝑒𝑓𝑓 | between measured 𝑒𝑓𝑓 and modelled
̂𝑒𝑓𝑓 low-strain Young’s moduli ranges between 1.0 kPa and 2.8 kPa.
Thus, overall values and tendencies observed for modelled ̂𝑒𝑓𝑓 agree
with those observed for measured 𝑒𝑓𝑓 and are within the model
accuracy of 3.5 kPa reported previously in Ahmad et al. (2021, 2022).

For modelled ̂𝑒𝑓𝑓 , the impact (II𝑀5,., IV𝐸𝑃𝐼,.) or lack thereof
(III𝑀𝑅𝐼,.) of the imposed ratio (length-based or volume-based as de-
tailed in Section 2.2) is understood considering the harmonic mean in
Eq. (5). The mean depends on individual layer lengths 𝑙𝑖=1…𝑛 and layer
Young’s moduli 𝑖=1…𝑛 indicated in Fig. 3. For all specimens, 𝑌𝑖 is larger
in the muscle layer than in the superficial layer so that shortening the
muscle layer, corresponding to imposing the volume ratio instead of
the length ratio, results in reducing ̂𝑒𝑓𝑓 . The decrease is significant
for M5-based (3.4 kPa) and EPI-based (4.7 kPa) replicas. For MRI-based
specimens the decrease is not significant (0.1 kPa) as the muscle layer
is shortened with less than ≤15% (or ≤5.6 mm) and in addition 𝑖 of the
muscle (4.0 kPa) and superficial (2.2 kPa) layer are of the same order
of magnitude.

5.2. Non-linear continuous models: fitted and predicted two-parameter sets

5.2.1. Continuous model accuracy
The exponential (E) and cubic (C) continuous two-parameter rela-

tionships (Eq. (4)) with predicted parameter sets, i.e. either generic
model-based parameter sets (suffix -M, Eq. (6)) or generic approxi-
mated parameter sets (suffix -A, Eq. (7)), allow to model the stress–
strain behaviour in the range 𝜀𝑡 ≤ 1.55. It is reminded that generic
two-parameter sets reduce to a one-parameter continuous model as
their values depend only on the effective low-strain Young’s modulus.
Measured 𝑒𝑓𝑓 and modelled ̂𝑒𝑓𝑓 effective low-strain Young’s moduli
were given in Table 4.

At first, measured values 𝑒𝑓𝑓 are used to determine the generic
parameter sets for each specimen in order to consider the accuracy
of the generic parameter approach without accounting for errors as-
sociated with the modelled effective low-strain Young’s modulus ̂ .
Modelled continuous stress–strain curves are illustrated for the cubic
relationship in Fig. 7 for specimens II𝑀5,𝐿, II𝑀5,𝑉 , III𝑀𝑅𝐼,𝑉 and IV𝐸𝑃𝐼,𝑉 .
For comparison, the model outcome with the cubic best fit parameters
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(C-fit) estimated on the measured stress–strain data is plotted as well.
The accuracy of each curve with respect to the measured data is
indicated (𝑅2 in percentage, rmse in kPa) as is low-strain upper limit 𝜀𝑙.
For specimens III𝑀𝑅𝐼,𝑉 and IV𝐸𝑃𝐼,𝑉 , the measured strain range yields
up to about twice 𝜀𝑙 since 𝜀𝑡 ≤ 0.49. Within this range, both C-M
and C-A curves provide accurate estimates of the measured data as
rmse ≤ 0.39 kPa and 𝑅2 ≥ 95.6%. This is in particular the case for
the C-M curves for which the associated accuracies approximate the
best fit accuracies (𝑅2 ≥ 99.9% and rmse ≤ 0.03 kPa). For specimens
II𝑀5,𝐿 and II𝑀5,𝑉 the measured strain-range is extended, up to about
thrice 𝜀𝑙 since 𝜀𝑡 ≤ 1.08. The C-A curve (𝑅2 = 99.6% and rmse =
0.71 kPa) agrees best with measured data for specimen II𝑀5,𝐿 whereas
the C-M curve (𝑅2 ≥ 99.6% and rmse ≤ 0.89 kPa) provides the best
estimate for specimen II𝑀5,𝑉 . In general, both the exponential and cubic
curves obtained with 𝑒𝑓𝑓 and either of the generic parameter sets, i.e.
model-based (C-M and E-M) or approximated (C-A and E-A), provide a
reasonable accuracy as 𝑅2 > 93% and rmse < 3.6 kPa for all specimens.
This shows that when the effective low-strain Young’s modulus 𝑒𝑓𝑓
is measured, e.g. from uni-axial tension tests in the range 𝜀𝑡 < 0.25,
the non-linear behaviour for larger strains can be modelled without the
need for additional measurements. Thus, the proposed one-parameter
model for the continuous stress–strain behaviour is validated for all six
replica-based specimens within the measured strain ranges.

In the case that the generic parameter sets for each specimen are
determined not from measured 𝑒𝑓𝑓 , but from modelled ̂𝑒𝑓𝑓 , the
continuous stress–strain behaviour is estimated solely from the compo-
sition of each composite specimen (Eq. (5)) without any measurement
on the composite specimen. As modelled ̂𝑒𝑓𝑓 provide a close, but not
exact match to 𝑒𝑓𝑓 (Table 4) the accuracy found for the exponential
and cubic curves for generic parameter sets based on ̂𝑒𝑓𝑓 is expected to
reduce. Nevertheless, as for all specimens 𝑅2 > 79% and rmse < 5.0 kPa
hold, generic parameter sets based on ̂𝑒𝑓𝑓 still provide an acceptable
accuracy. This is of particular interest aiming for the structural design
of specimens as the approach allows to reasonably predict the overall
stress–strain behaviour without any measurement.

5.2.2. Curves with generic two-parameters sets: strain-range up to 1.55
Generic two-parameters sets are derived for strains up to 1.55 at

most. Beyond this strain limit, the assumption of the nearly matching
exponential and cubic relationships fails (Ahmad et al., 2023). This
full strain range (𝜀𝑡 < 1.55) is used to compare the stress–strain be-
haviour of all six specimens for the cubic relationship. Curves obtained
using generic model-based parameter set (C-M) with measured 𝑒𝑓𝑓
(Table 4) for the length-based and volume-based specimens are plotted
in Fig. 8. As expected, curves for specimens with similar low-strain
Young’s modulus 𝑒𝑓𝑓 are in close agreement. This is the case for
specimens IV𝐸𝑃𝐼,𝐿 and III𝑀𝑅𝐼,𝐿 (𝑒𝑓𝑓 -difference of 0.3 kPa or 5%) and
for specimens IV𝐸𝑃𝐼,𝑉 and III𝑀𝑅𝐼,𝑉 (𝑒𝑓𝑓 -difference of 0.5 kPa or 10%).
The stress–strain curves increase more rapidly with 𝑒𝑓𝑓 , as values of
the generic two-parameter sets increase, so that curves for M5-based
specimens (II𝑀5,𝐿 and II𝑀5,𝑉 ) are increased compared to curves for
MRI-based (III𝑀𝑅𝐼,𝐿 and III𝑀𝑅𝐼,𝑉 ) and EPI-based (IV𝐸𝑃𝐼,𝐿 and IV𝐸𝑃𝐼,𝑉 )
specimens. For the same reason, stresses associated with length-based
specimens are increased compared to volume-based specimens. Thus,
this illustrates that the continuous relationships with generic two-
parameter sets become de-facto a one-parameter model approach, so
that the modelled non-linear stress–strain behaviour can be explained
in terms of their low-strain elastic Young’s modulus.

5.2.3. Linear low-strain elasticity
The low-strain Young’s modulus is related to the parameters of

the exponential and cubic relationships as 𝐴𝐵 and 𝑏, respectively
(Section 4.2). For generic parameter sets, obtained from the low-strain
Young’s modulus, ratios 𝐴𝐵∕𝑒𝑓𝑓 and 𝑏∕𝑒𝑓𝑓 are constant:

generic model-based - constant ratio: 𝐴𝐵 = 1, 𝑏 = 1, (10a)

𝑒𝑓𝑓 𝑒𝑓𝑓
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Fig. 7. Illustration of measured (×) stress–strain data 𝜎𝑡(𝜀𝑡) and their cubic best fit (C-fit): (a) II𝑀5,𝐿, (b) II𝑀5,𝑉 , (c) III𝑀𝑅𝐼,𝑉 and d) IV𝐸𝑃𝐼,𝑉 . Modelled cubic curves (𝜀𝑡 ≤ 1.55)
with generic model-based parameter sets (C-M) and generic approximated parameter sets (C-A) obtained using measured 𝑒𝑓𝑓 . Cubic curve accuracies (𝑅2 in %, rmse in kPa) and
low-strain upper limit 𝜀𝑙 are indicated.
Fig. 8. Cubic stress–strain curves 𝜎𝑡(𝜀𝑡) for generic model-based parameter sets (C-M) with measured 𝑒𝑓𝑓 : (a) length-based specimens (IV𝐸𝑃𝐼,𝐿, III𝑀𝑅𝐼,𝐿, II𝑀5,𝐿), (b) volume-based
specimens (IV𝐸𝑃𝐼,𝑉 , III𝑀𝑅𝐼,𝑉 , II𝑀5,𝑉 ). Mean low-strain upper limit 𝜀𝑙 = 0.28 is indicated.
generic approximated - constant ratio: 𝐴𝐵
𝑒𝑓𝑓

= 0.73, 𝑏
𝑒𝑓𝑓

= 0.92.

(10b)

Ratios associated with best fit parameter estimates obtained by fitting
the exponential (E-fit, (𝐴,𝐵 )) and cubic (C-fit, (𝑎, 𝑏̂ )) relationships to
the measured stress–strain data are plotted in Fig. 9. Plotted values vary
between 0.6 and 0.92 and thus less than unity, i.e. the constant for the
generic model-based parameters (Eq. (10a)). Mean values (lines) are
indicated and yield:

best fit - mean ratio: 𝐴𝐵∕𝑒𝑓𝑓 = 0.67, 𝑏̂∕𝑒𝑓𝑓 = 0.77. (11a)

Standard deviations are small, 9% (±0.06 for 𝐴𝐵∕𝑒𝑓𝑓 ) and 12%
(±0.09 for 𝑏̂∕𝑒𝑓𝑓 ), and mean values are of the same magnitude as the
constants of the generic approximated parameter sets (Eq. (10b). Thus
ratios estimated on the data approximate the constant values associated
with the generic parameter sets. Thus, overall fitted ratios confirm that
continuous relationships for generic parameters allow to capture the
low-strain stress behaviour for the replica-based specimens.
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Fig. 9. Ratios 𝐴𝐵∕𝑒𝑓𝑓 (×) and 𝑏̂∕𝑒𝑓𝑓 (∙) between best fit parameters, obtained
from fitting the exponential (E-fit) and cubic (C-fit) relationships to the measured
stress–strain data, and the measured low-strain Young’s modulus 𝑒𝑓𝑓 for length-based
(II𝑀5,𝐿, III𝑀𝑅𝐼,𝐿 and IV𝐸𝑃𝐼,𝐿) and volume-based (II𝑀5,𝑉 , III𝑀𝑅𝐼,𝑉 and IV𝐸𝑃𝐼,𝑉 ) silicone
specimens. Mean values for 𝐴𝐵∕𝑒𝑓𝑓 (dashed line) and 𝑏̂∕𝑒𝑓𝑓 (full line) are indicated
as well.

5.2.4. Linear high-strain elasticity: effective Young’s modulus and onset
The linear high-strain range is fully characterised by its effective

high-strain Young’s modulus 𝑁𝐿 and onset strain 𝜀𝑁𝐿
𝑡 . Concretely,

𝑁𝐿 is obtained as the slope of a linear fit to interval [𝜀𝑁𝐿
𝑡 1.55]

on the curves obtained from the continuous exponential and cubic
relationships with generic parameter sets (E-M, E-A, C-M and C-A). The

𝑁𝐿
influence of onset strain 𝜀𝑡 on the estimated slope and the linear fit
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Fig. 10. Influence of high strain onset 𝜀𝑁𝐿
𝑡 ∈ {1.00, 1.20, 1.27, 1.35} (subplots) on slope 𝑁𝐿 (in kPa) and accuracy (min(𝑅2) in %) of linear fits (grey lines) to intervals [𝜀𝑁𝐿

𝑡 1.55]
for exponential stress–strain curves 𝜎𝑡(𝜀𝑡) obtained with generic model-based (E-M) and with generic approximated (E-A) parameter sets for specimen IV𝐸𝑃𝐼,𝐿 (𝑒𝑓𝑓 = 5.7 kPa).
Measured (×) stress–strain data and their exponential best fit (E-fit) are plotted as well. Model and fit accuracies (𝑅2 in %, rmse in kPa) and low-strain limit 𝜀𝑙 are given.
Fig. 11. Ratio (symbols) of the high-strain to low-strain effective Young’s modulus
𝑁𝐿∕𝑒𝑓𝑓 (𝜀𝑁𝐿

𝑡 ) with 𝑁𝐿 obtained as the slope of linear fits (min(𝑅2) in %) to intervals
[𝜀𝑁𝐿

𝑡 1.55] for 𝜀𝑁𝐿
𝑡 ∈ {1, 1.1, 1.2, 1.27, 1.35, 1.44, 1.5} on exponential and cubic curves

with generic model-based or generic approximated parameter sets: C-A (∙), C-M (▾),
E-A (+) and E-M (×). Ratios obtained analytically from local slope expressions (Eq. (9))
are plotted (lines) as well. Values (𝜀𝑁𝐿

𝑡 , 𝑁𝐿∕𝑒𝑓𝑓 ) (rectangular frames) at which local
and linear slopes match (up to the first decimal place leading to first decimal criterion
FDC) are indicated. Plotted ratios are specimen independent.

accuracy (𝑅2) is illustrated in Fig. 10 for specimen IV𝐸𝑃𝐼,𝐿. Linear fits
to the interval [𝜀𝑁𝐿

𝑡 1.55] of exponential curves with generic model-
based (E-M) and generic approximated (E-A) parameter sets are plotted
for four different onset strains, 𝜀𝑁𝐿

𝑡 ∈ {1.00, 1.20, 1.27, 1.35}. The high-
strain linear slope 𝑁𝐿 is indicated for each generic parameter set and
the minimum linear fit accuracy 𝑅2 for both parameter sets is indicated.
It is seen that regardless of 𝜀𝑁𝐿

𝑡 , slopes 𝑁𝐿 obtained using generic
model-based (E-M) parameter sets are 26% greater than those found
for generic approximated (E-A) parameter sets. Fig. 10 illustrates that
𝑁𝐿 (with 30%) and 𝑅2 (from 97.62% to 99.68%) increase with 𝜀𝑁𝐿

𝑡 ,
i.e. when the fit interval is shortened.

A systematic overview of effective high-strain Young’s modulus
𝑁𝐿 normalised with effective low-strain Young’s modulus 𝑒𝑓𝑓 as
a function 𝜀𝑁𝐿

𝑡 is provided in Fig. 11. Slopes estimated from linear
fits (symbols) to intervals [𝜀𝑁𝐿

𝑡 1.55] on exponential and cubic curves
with generic model-based and with generic approximated parameter
8

sets (C-A, C-M, E-A and E-M), as illustrated in Fig. 10, are obtained
for seven 𝜀𝑁𝐿

𝑡 -values between 1 and 1.5. For each 𝜀𝑁𝐿
𝑡 , the overall

minimum linear fit accuracy, which corresponds to values obtained
for exponential curves, is indicated between brackets. The minimum
fit accuracy 𝑅2 ≥ 97.62% (or 𝑅2 ≥ 98.97% for cubic curves) is
sufficiently large to argue that linear fits provide a good approximation
of modelled non-linear stress–strain curves in the intervals [𝜀𝑁𝐿

𝑡 1.55]
with 𝜀𝑁𝐿

𝑡 ≥ 1. Nevertheless, in order to potentially extend the linear
range continuously beyond the range 𝜀𝑡 = 1.55, a fit accuracy of 𝑅2 ≤
99% seems necessary, e.g. when comparing the overlap of modelled
continuous curves and high-strain linear fits for 𝜀𝑁𝐿

𝑡 = 1 (𝑅2 ≥ 97.62%)
and 𝜀𝑁𝐿

𝑡 = 1.27 (𝑅2 ≥ 99.37%) in Fig. 10. It is noted that plotted ratios
𝑁𝐿∕𝑒𝑓𝑓 obtained on curves with generic parameter sets are specimen
independent due to the normalisation by 𝑒𝑓𝑓 .

Ratios of linear slopes 𝑁𝐿∕𝑒𝑓𝑓 are further compared to values
resulting from the analytical local slope expressions summarised in
Eq. (9). Normalised local slopes are plotted (lines) as function of 𝜀𝑁𝐿

𝑡
in Fig. 11 for C-A using Eq. (9d), for C-M using Eq. (9b), for E-A
using Eq. (9c) and for E-M using Eq. (9a). Values (𝜀𝑁𝐿

𝑡 , 𝑁𝐿∕𝑒𝑓𝑓 ) at
which linear and local slopes match up to the first decimal place (first
decimal criterion, FDC) are indicated in Fig. 11 and summarised in
Table 5. It is noted that this criterion indeed ensures that linear fits
are a continuous extension of the non-linear curves, either exponential
or cubic. From Table 5 follows that the exponential relationship with
generic approximated parameter set (E-A) is associated with the largest,
and hence most meaningful, high-strain interval [𝜀𝑁𝐿

𝑡 1.55] with 𝜀𝑁𝐿
𝑡 =

1.27. In addition, associated ratios 𝑁𝐿∕𝑒𝑓𝑓 are in between values
found for the cubic relationship with generic model parameters (C-M
and C-A). Moreover, the E-A model results in the best overall model
accuracy (𝑅2 = 98 ± 3%) (Ahmad et al., 2023). Therefore, the E-
A model approach (𝑁𝐿 ≈ 16.7 𝑒𝑓𝑓 ) is used to estimate high-strain
Young’s moduli 𝑁𝐿 for all specimens. Resulting 𝑁𝐿 are summarised
in Table 6.

Thus, the potential of a high-strain extension leads to favour the
non-linear exponential relationship (E-A) with generic exponential ap-
proximated parameters 𝐴 =  ∕3.03 and 𝐵 = 2.21. When accounting
𝑒𝑓𝑓
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Table 5
Overview of high strain onset 𝜀𝑁𝐿

𝑡 and normalised high-strain Young’s modulus
𝑁𝐿∕𝑒𝑓𝑓 indicated in Fig. 11 obtained with the first decimal criterion (FDC).

FDC applied to 𝜀𝑁𝐿
𝑡 𝑁𝐿∕𝑒𝑓𝑓

C-A and Eq. (9d) 1.5 13.2
C-M and Eq. (9b) 1.5 18.5
E-A and Eq. (9c) 1.27 16.7
E-M and Eq. (9a) – –

Table 6
High-strain Young’s moduli 𝑁𝐿 ≈ 16.7 𝑒𝑓𝑓 .

𝐿-based 𝑁𝐿 [kPa] 𝑉 -based 𝑁𝐿 [kPa]

II𝑀5,𝐿 134 II𝑀5,𝑉 120
III𝑀𝑅𝐼,𝐿 90 III𝑀𝑅𝐼,𝑉 75
IV𝐸𝑃𝐼,𝐿 95 IV𝐸𝑃𝐼,𝑉 84

for a linear high-strain range for 𝜀𝑡 ≥ 𝜀𝑁𝐿
𝑡 , the stress–strain relationship

or the replica-based specimens becomes:

𝑡(𝜀𝑡) = 𝐴 (𝑒𝐵 𝜀𝑡 − 1) for 𝜀𝑡 ≤ 𝜀𝑁𝐿
𝑡 ,

= 𝑁𝐿 𝜀𝑡 + 𝐴 (𝑒𝐵 𝜀𝑁𝐿
𝑡 − 1) for 𝜀𝑡 > 𝜀𝑁𝐿

𝑡 , (12)

ith strain onset 𝜀𝑁𝐿
𝑡 = 1.27 and effective high-strain Young’s modulus

𝑁𝐿 = 16.7 𝑒𝑓𝑓 . It is noted, that Eq. (12) remains a one-parameter
pproach as the stress–strain behaviour can be determined from the
ffective low-strain Young’s modulus 𝑒𝑓𝑓 . Eq. (12) allows to extent the
ne-parameter approach for the replica-based specimens to the linear
igh-strain range and thus to remove the strain limit (up to 1.55).

. Conclusion

Uni-axial tension test data on six composite specimens derived from
hree multi-layer silicone vocal folds replicas allowed to validate a
ne-parameter continuous non-linear model approach for silicone com-
osites, which allows to explain the stress–strain behaviour from the
ffective low-strain Young’s modulus of each homogenised specimen.
he effective low-strain Young’s modulus (between 3 and 10 kPa) is
ither measured as the slope of linear low-strain range (up to ≈0.28)
r modelled (accuracy between 1 and 2.8 kPa) from the specimens
ayer composition. Although that the stress–strain model accuracy is
reater for measured (𝑅2 > 93%, rmse < 3.6 kPa) than for modelled
𝑅2 > 79%, rmse < 5 kPa) values of the low-strain Young’s mod-
lus, it is shown that in both cases the stress–strain behaviour can
e explained as a function of the composite structure by means of
he effective low-strain Young’s modulus. This implies that the one-
arameter model approach is validated in the low-strain and non-linear
train region. To potentially extend the model approach beyond the
train limit of 1.55, a criterion is proposed to identify a linear high-
train region with onset 1.27 and with effective high-strain Young’s
odulus equal to 16.7 times the effective low-strain Young’s modulus.
his linear high-strain range provides a continuous extension to the
xponential relationship with generic approximated parameter set for
trains smaller than the high-stain onset 1.27. Overall, it is shown that
one-parameter model approach allows to model and explain the non-

inear stress–strain relationship from its effective low-strain Young’s
odulus and thus to provide a quantitative stress–strain behaviour

omparison of composites used to mold vocal fold replicas. In addition,
he influence of the structural design of silicone composites for vocal
old replicas with structural changes, either normal or abnormal, on
he stress–strain behaviour can be systematically assessed without any
easurement or with uni-axial testing solely within the low-strain limit

between 0.25 and 0.32). As so far, no measure-free analytical model
pproach was available, the assessed approach is expected to encourage
9

urther research.
eclaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
nnemie Van Hirtum reports financial support was provided by French
ational Research Agency (ANR-20-CE23-0008-23). Mohammad Ah-
ad reports financial support was provided by French Government
inistry of National Education.

ata availability

Data will be made available on request.

cknowledgements

This work was partly supported by Full3DTalkingHead project
ANR-20-CE23-0008-03) and a Ph.D. grant (French Ministry of Edu-
ation and Research).

eferences

hmad, M., Bouvet, A., Pelorson, X., Van Hirtum, A., 2021. Modelling and validation
of the elasticity parameters of multi-layer specimens pertinent to silicone vocal fold
replicas. Int. J. Mech. Sci. 208, 106685.

hmad, M., Pelorson, X., Fernández, A., Guasch, O., Van Hirtum, A., 2022. Low-strain
effective Young’s modulus model and validation for multi-layer vocal fold-based
silicone specimens with inclusions. J. Appl. Phys. 131, 054701.

hmad, M., Pelorson, X., Guasch, O., Fernández, A., Van Hirtum, A., 2023. Modelling
and validation of the non-linear elastic stress–strain behaviour of multi-layer
silicone composites. J. Mech. Behav. Biomed. Mater. 139, 105690.

lexander, N., Wang, K.Y., Jiang, K., Ongkasuwan, J., Lincoln, C., 2021. Volumetric
analysis of the vocal folds using computed tomography: effects of age, height, and
gender. Laryngoscope 131, E240–E247.

lipour, F., Titze, I., 1991. Elastic models of vocal fold tissues. J. Acoust. Soc. Am. 90,
1326–1331.

erke, G., Gerratt, B., 1993. Laryngeal biomechanics: an overview of mucosal wave
mechanics. J. Voice 7, 123–128.

ouvet, A., 2019. Experimental and Theoretical Contribution to the Analysis and the
Modelling of the Vocal Folds Vibration. (Ph.D. thesis). Grenoble Alpes University,
France.

ouvet, A., Tokuda, I., Pelorson, X., Van Hirtum, A., 2020b. Influence of level difference
due to vocal folds angular asymmetry on auto-oscillating replicas. J. Acoust. Soc.
147, 1136–1145.

ouvet, A., Tokuda, I., Pelorson, X., Van Hirtum, A., 2021. Imaging of auto-oscillating
vocal folds replicas with left–right level difference due to angular asymmetry.
Biomed. Signal Process. Control 63, 1–12.

han, R., Fu, M., Young, L., Tirunagari, N., 2007. Relative contributions of collagen
and elastin to elasticity of the vocal fold under tension. Ann. Biomed. Eng. 35,
1471–1483.

hhetri, D., Zhang, Z., Neubauer, J., 2011. Measurement of Young’s modulus of vocal
folds by indentation. J. Voice 25, 1–7.

ung, Y., 1967. Elasticity of soft tissues in simple elongation. Am. J. Physiol. 213,
1605–1624.

ung, Y., 2010. Biomechanics. Springer.
irano, M., Kurita, S., Nakashima, T., 1983. Vocal Fold Physiology: Contempory

Research and Clinical Issues. College-Hill Press, pp. 22–43.
in, Y., Titze, I., Alipour, F., 1995. Stress–strain response of the human vocal ligament.

Ann. Otol. Rhinol. Laryngol. 104, 563–569.
iri, A., 2014. Mechanical characterization of vocal fold tissue: a review study. J. Voice

28, 657–666.
obashir, M., Mohamed, A., Quriba, A., Anany, A., Hassan, E., 2018. Linear measure-

ments of vocal folds and laryngeal dimensions in freshly excised human larynges.
J. Voice 32, 525–529.

urray, P., Thomson, S., 2012. Vibratory responses of synthetic, self-oscillating vocal
fold models. J. Acoust. Soc. Am. 132, 3428–3438.

’Shaughnessy, D., 1987. Speech Communication Human and Machine. Addison-Wesley
Publishing Company.

ickup, B., Thomson, S., 2010. Flow-induced vibratory response of idealized versus
magnetic resonance imaging-based synthetic vocal fold models. J. Acoust. Soc. Am.
128, 124–129.

lant, R., Freed, G., Plant, R., 2004. Direct measurement of onset and offset phonation
threshold pressure in normal subjects. J. Acoust. Soc. Am. 116, 3640–3646.

euss, A., 1929. Berechnung der fließgrenze von mischkristallen auf grund der

plastizitätsbedingung für einkristalle. ZAMM Z. Angew. Math. Mech. 9, 49–58.

http://refhub.elsevier.com/S0997-7538(23)00154-7/sb1
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb1
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb1
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb1
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb1
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb2
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb2
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb2
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb2
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb2
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb3
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb3
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb3
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb3
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb3
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb4
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb4
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb4
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb4
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb4
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb5
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb5
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb5
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb6
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb6
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb6
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb7
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb7
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb7
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb7
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb7
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb8
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb8
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb8
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb8
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb8
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb9
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb9
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb9
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb9
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb9
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb10
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb10
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb10
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb10
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb10
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb11
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb11
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb11
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb12
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb12
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb12
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb13
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb14
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb14
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb14
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb15
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb15
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb15
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb16
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb16
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb16
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb17
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb17
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb17
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb17
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb17
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb18
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb18
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb18
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb19
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb19
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb19
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb20
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb20
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb20
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb20
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb20
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb21
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb21
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb21
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb22
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb22
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb22


European Journal of Mechanics / A Solids 101 (2023) 105062A. Van Hirtum et al.

T

V

Z

Riede, T., Brown, C., 2013. Body size, vocal fold length, and fundamental frequency:
implications for mammal vocal communication. Nova Acta Leopoldina NF 111
(380), 295–314.

Rosen, C., Simpson, C., 2008. Operative Techniques in Laryngology. Springer-Verlag.
Scherer, R., Shinwari, D., De Witt, K., Zhang, C., Kucinschi, B., Afjeh, A., 2001.

Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence
angle of 10 degrees. J. Acoust. Soc. Am. 109, 1616–1630.

Tanaka, M., Weisenbach, C., Miller, M., Kuxhaus, L., 2011. A continuous method to
compute model parameters for soft biological materials. J. Biomed. Eng. 133, 1–7.
10
Titze, I., 2011. Vocal fold mass is not a useful quantify for describing 𝑓0 in vocalization.
J. Speech Lang. Hear. Res. 54, 520–522.

okuda, I., Shimamura, R., 2017. Effect of level difference between left and right vocal
folds on phonation: Physical experiment and theoretical study. J. Acoust. Soc. Am.
142, 482–492.

an Hirtum, A., Bouvet, A., Tokuda, I., Pelorson, X., 2022. Dynamic vibration mode
decomposition of auto-oscillating vocal fold replicas without and with vertical
tilting. J. Sound Vib. 516, 116504.

hang, Z., Samajder, H., Long, J., 2017. Biaxial mechanical properties of human vocal
fold cover under fold elongation. J. Acoust. Soc. Am. 29, EL356.

http://refhub.elsevier.com/S0997-7538(23)00154-7/sb23
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb23
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb23
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb23
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb23
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb24
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb25
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb25
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb25
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb25
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb25
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb26
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb26
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb26
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb27
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb27
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb27
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb28
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb28
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb28
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb28
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb28
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb29
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb29
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb29
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb29
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb29
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb30
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb30
http://refhub.elsevier.com/S0997-7538(23)00154-7/sb30

	Uni-axial stress–strain characterisation of silicone composite specimens derived from vocal folds replicas
	Introduction
	From three ML silicone replicas to six ML silicone specimens
	Three ML silicone replicas: M5, MRI and EPI
	Six replica-based bone-shaped ML silicone specimens

	Experimental stress–strain data characterisation
	Stress–strain data from uni-axial tension testing
	Experimental characterisation: best fit stress–strain model parameters
	Linear model fitting: low-strain and high-strain Young's modulus
	Non-linear continuous models: best fit two-parameter sets


	Analytical stress–strain model parameter prediction 
	Linear low-strain range: predicted effective low-strain Young's modulus
	Linear and non-linear stress–strain range: predicted two-parameter sets 
	Linear high-strain range: predicted effective high-strain Young's modulus

	Stress–strain parameters and curves: measured and predicted
	Low-strain linear elasticity: effective Young's modulus Eeff and widehat Eeff
	Non-linear continuous models: fitted and predicted two-parameter sets
	Continuous model accuracy
	Curves with generic two-parameters sets: strain-range up to 1.55 
	Linear low-strain elasticity 
	Linear high-strain elasticity: effective Young's modulus and onset 


	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


