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Validation of an analytical compressed elastic tube model for acoustic wave
propagation
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Acoustic wave propagation through a compressed elastic tube is a recurrent problem in

engineering. Compression of the tube is achieved by pinching it between two parallel bars so

that the pinching effort as well as the longitudinal position of pinching can be controlled. A

stadium-based geometrical tube model is combined with a plane wave acoustic model in order to

estimate acoustic wave propagation through the elastic tube as a function of pinching effort,

pinching position, and outlet termination (flanged or unflanged). The model outcome is validated

against experimental data obtained in a frequency range from 3.5 kHz up to 10 kHz by displacing

an acoustic probe along the tube’s centerline. Due to plane wave model assumptions and the

decrease of the lowest higher order mode cut-on frequency with increasing pinching effort, the

difference between modeled and measured data is analysed in three frequency bands, up to 5 kHz,

8 kHz, and 9.5 kHz, respectively. It is seen that the mean and standard error within each frequency

band do not significantly vary with pinching effort, pinching position, or outlet termination.

Therefore, it is concluded that the analytical tube model is suitable to approximate the elastic tube

geometry when modeling acoustic wave propagation through the pinched elastic tube with either

flanged or unflanged termination. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4937447]

I. INTRODUCTION

An accurate description of a constricted channel’s

geometry and related geometrical features is often crucial—

and therefore a recurrent problem—in different engineering

disciplines. Geometrical features will affect main fluid flow

characteristics related to inertia, boundary layer development,

flow detachment, or jet formation downstream from the con-

stricted channel portion.6 The same way, the accuracy of

wave related problems will depend on the waveguide’s geom-

etry since it will influence among others the propagation or

evanescence of higher order modes.11 Accurate knowledge of

the channel geometry is often lacking when dealing with nat-

ural occurring fluid flow or wave propagation through elastic

channels for which no geometrical design is possible, and in

addition, the shape can rapidly vary. This is the case for bio-

logical channel flows (lower and upper airway respiratory or

blood circulation system) and related phenomena.

Human speech production is an example of such a com-

mon everyday phenomena for which the channel geometry,

i.e., the vocal tract geometry, is crucial for an accurate

description of ongoing flow and acoustic phenomena since

the vocal tract shape will affect both the flow and the acoustic

field.2,16 Moreover, a rapidly varying channel constriction

degree and hence overall channel shape are crucial when con-

sidering articulation of phoneme sequences which involves

boundary velocities up to hundreds of mm/s and this during

several seconds.12,13 Obviously, a detailed vocal tract channel

geometry is extremely complex and is subject to intra- as

well as inter-subject differences. Therefore, studies aiming to

contribute to the understanding and modelling of physical

phenomena underlying human speech production commonly

rely on simplified channel geometries in order to allow sys-

tematic validation of the quantities of interest on data

obtained from measurements on mechanical replicas or nu-

merical simulation (for example, Refs. 2, 4, and 16).

Nevertheless, in order to ensure knowledge of the geometry,

most studies—such as Refs. 2, 4, and 16—are limited to rigid

channels for which a constriction is obtained by inserting one

or more rigid sections with known shape. In case the section

is movable, the movable section in an otherwise fixed geome-

try will introduce a discontinuity in the channels geometry

which potentially affects both the flow and the acoustic

field.1,2 Therefore, representing the vocal tract by an elastic

circular channel which can be compressed by an external pin-

cer at certain streamwise positions has the advantage to avoid

such a discontinuity, while at the same time the constriction

degree can be rapidly varied by applying a suitable loading.

Recently, a homothetic analytical geometrical model for

a circular elastic tube (silicone, Siant-Gobain) compressed

between two parallel bars is proposed exploiting a single

input parameter directly related to the imposed pinching

effort.14 The procedure was applied to the case of a circular

elastic tube of length l¼ 184 mm and internal radius b0

¼ 12.5 mm (corresponding to radius to length ratio b0/

l¼ 7%) compressed between parallel bars as illustrated in

Fig. 1. The pinching bars were circular with diameter

6.4 mm and length 55 mm which is longer than that of the

maximum value of the major axis a(x) of the compressed

tube with longitudinal dimension x. The pinching effort

imposed by the parallel bars is then expressed as 1� bxc
=b0,
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with xc denoting the pinching position so that bxc
denotes the

minor axis of the tube’s cross-section at the pinching position

x¼ xc. The tube was observed to deform quasi-symmetrically

around the pinching position over a length of 8� b0 which

corresponds to 4 times the internal diameter of the circular

tube. Under the assumptions that perimeter P¼ 2pb0 and

wall thickness d¼ 3 mm (corresponding to ratio d/b0¼ 24%)

remain constant for all cross-sections, it was shown that a ge-

ometrical model based on the stadium ring with rounded

edges provides an accurate (61 mm) approximation of the

tube’s geometry for pinching efforts in the range

40% < 1� bxc
=b0 < 95%.14 The model has a negligible

computational cost and requires solely the imposed pinching

effort as an input parameter. This favors usage in combina-

tion with other analytical model approaches exploiting a

limited number of physiologically meaningful input parame-

ters as commonly applied in physical or mathematical speech

production models (e.g., Ref. 16 and references therein). A

computationally low cost parametrized geometrical tube

model is of particular interest when the geometry is rapidly

changing such as for a rapid change of the pinching effort,

i.e., rapidly and/or consecutive opening and closing.

Moreover, the need to control a single well defined geometri-

cal parameter, such as the pinching effort, is attractive for ex-

perimental design since it facilitates experimental validation.

Acoustic wave propagation through the elastic tube com-

pressed between two parallel bars is experimentally assessed

for different pinching efforts (1� bxc
=b0), pinching positions

(xc), and tube’s outlet conditions. Measured acoustic pres-

sures are compared with modeled acoustic results using

the stadium-based tube model. The applied methodology

(Section II) for modeling of the tube geometry and recon-

struction (Section II A), experimental approach (Section II B),

and acoustic pressure model (Section II C) is outlined in

Secs. II A–II C. Next, results are presented in Section III and

the conclusion is formulated in Section IV.

II. METHODOLOGY

A. Geometrical tube model and reconstruction

1. Stadium ring model

The stadium ring shape with rounded edges is illustrated

in Fig. 2. The shape consists of two parallel flat portions which

are connected by circular arcs with radius b. The radius equals

the minor axis of the stadium b. The critical angle u 2 ½0; p=2�
determines the critical length L ¼ b= tanðuÞ � 0. The shape is

fully determined by a single input parameter when the perime-

ter is assumed to be conserved so that P¼ 2pb0 holds with b0

the radius of the circle with the same perimeter (i.e., shape for

L¼ 0 and u ¼ p=2). Therefore, in the following, the perimeter

is assumed to be known. Using minor axis b as an input param-

eter, the stadium shape rb(h) in polar coordinates (r, h) is given

as a piecewise function of h 2 [0, 2p]

rb hð Þ ¼

b

sin hð Þ
; for u � h � p� u;

p
2

b
1� b

b
4

p2

b
1� b

� �2

� sin2 hð Þ
 !1=2

þ cos hð Þ

2
4

3
5; for� u < h < u;

p
2

b
1� b

b
4

p2

b
1� b

� �2

� sin2 hð Þ
 !1=2

� cos hð Þ

2
4

3
5; for p� u < h < pþ u;

� b

sin hð Þ
; for pþ u � h � 2p� u;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(1)

with b¼ b/b0 � 1 denoting the ratio of the minor axis to the

radius of the circle with the same perimeter so that the criti-

cal angle yields uðbÞ ¼ arctan 2
p

b
1�b.

The area A enveloped by the stadium ring shape and

major axis a as a function of imposed minor axis b yield

then

FIG. 1. Illustration of a pinched elastic tube’s geometry oriented along the

longitudinal x-direction. The tube has internal radius b0¼ 12.5 mm and wall

thickness d¼ 3 mm and is pinched at longitudinal position xc with tube

length l¼ 184 mm. The pincher effort is defined as 1� bxc
=b0. A front view

(xy-plane on the left) and a side view (xz-plane on the right) are shown so

that the right-hand side outer contour corresponds, respectively, to a(x) þ d
and b(x) þ d with major axis a(x) and minor axis b(x).
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A ¼ pb2 þ 2p b2
0 b ð1� bÞ; (2)

a ¼ bþ p
2

b0 1� bð Þ: (3)

Figure 3 illustrates normalised geometrical stadium pa-

rameters (up to 100% decrease of minor axis b/b0, up to 50%

increase of major axis a/b0, and up to 100% decrease of area

A/A0) as a function of increasing pinching degree 1 – b/b0 (or

1 – b) from 0% to 100%. In addition, Fig. 3 illustrates the

order of magnitude of the lowest cut-on frequency fc associ-

ated with the first higher order acoustic mode of the stadium

ring normalised by fc0, the cut-on frequency for a circle with

radius b0. The lowest cut-on frequency fc associated with the

largest dimension of the stadium shape is estimated as

fc ¼ vð1� bÞ � c
a with major axis a corresponding to the

half-width of the stadium ring, sound speed c, and propor-

tionality constant v< 1 depending on the shape of the sta-

dium and consequently on the pinching degree 1 – b.1 As the

pinching degree increases, the shape of the stadium ring will

vary from circular (a¼ b¼ b0 for 1 – b � 0%) to rectangular

(a � 1.5� b0 for 1 – b> 50%) so that v gradually deflects

from vð0%Þ ¼ 1:84
2p (circular) to vð> 50%Þ ¼ 1

4
(rectangular).1

Since fc is inversely proportional to a, the cut-on frequency

fc reduces with almost 50% as the pinching degree increases

due to the increase with 50% of a as illustrated in Fig. 3.

2. Stadium-based tube model

For each cross section of the elastic tube, the local

pinching degree 1 – b(x)/b0 with b(x) denoting the local

minor axis b(x) at a longitudinal position x is approximated

with a peak function following the data-driven procedure

outlined in Ref. 14

b xc;bxc ;abð Þ xð Þ ¼ b0 � b0 � 1� bxc

b0

� �
�

x� xcð Þ2

a2
b

þ 1

 !�1

;

(4)

with the minor axis at pinching position xc determined by the

imposed pinching effort 1� bxc
=b0 and the half peak width

at half amplitude ab(x) approximated as a quadratic function

of the pinching effort

abð1� bðxcÞÞ ¼ 48 � ð1� bðxcÞÞ2 � 70 � ð1� bðxcÞÞ þ 39;

(5)

where as before b(x)¼ b(x)/b0. The stadium ring model (1)

is then applied to each cross-section assuming a constant

perimeter P¼ 2pb0, known pinching position xc and using

expression (4) to obtain the local minor axis as a function of

the applied pinching effort 1 – b(xc) at position xc. The over-

all accuracy of the modeled tube geometry yields less than

4% of the tubes internal diameter b0 (or rb(h) 6 1 mm) when

the pinching effort is varied in the range from 40% up to

95%.14 Fig. 4(a) illustrates the modeled local minor axis b(x)

(following (4)) and resulting tube’s area function A(x)

(applying (2)) for different pinching efforts (58%, 77%, and

93%) applied at a single pinching position (xc ¼ �3.6D0

with D0¼ 2b0).

The geometry of a compressed elastic tube with pinch-

ing effort 77% is modeled using the outlined stadium-based

tube model approach. A wall thickness d¼ 3 mm is added to

the modeled tube in order to reconstruct a rigid tube for this

case (77%) using rapid prototyping (ProJet 3510 SD with

accuracy< 0.1 mm). The reconstructed rigid stadium-based

tube geometry is illustrated in Fig. 4(b).

B. Acoustic measurements

The compressed elastic tube (Fig. 1) or rigid reconstruc-

tion (Fig. 4(b)) is connected to an acoustic source (Eminence

PSD 2002 S-8 for frequencies from 3.5 kHz up to 10 kHz,

amplifier Onkyo a-807) through a central communication

hole with diameter 1 ¼ 2mm. When an elastic tube is used,

pinching position xc and pinching effort 1� bxc
=b0 is con-

trolled in order to apply the stadium based tube model out-

lined in Section II A. The tube is inserted in an acoustic

insulation room (volume 9.3 m3 (Ref. 15)), whereas the

acoustic source emitting a signal s(t) remains on the exterior.

A rigid flat screen (37 cm� 37 cm) can be added to the tube

outlet in order to obtain a flanged outlet condition. Acoustic

pressure p(t, x) (position vector x¼ (x, y, z)) inside the tube

FIG. 2. Illustration of geometrical stadium ring with rounded edges (rb(h)

and h 2 [0, 2p]) centered around origin o: minor axis b, major axis a, critical

angle u, and critical length L ¼ b= tanðuÞ � 0.

FIG. 3. Illustration of geometrical stadium parameters normalised by values

(subscript 0) associated with a circle (dashed lines) as a function of pinching

degree 1 – b (%): (top) minor axis b/b0 (þ) and major axis a/b0 (�), (mid-

dle) area A/A0 (�) and (bottom) lowest higher order cut-on frequency fc/fc0

for stadium-shape (Sta—full line), for a circle with half-width a as radius

(Cir—�), and a rectangle with half-width a (Rec—�).
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and near the tube exit is measured using an acoustic probe

(UA 9005) of diameter 1 ¼ 1 mm and length 200 mm

attached to a microphone (B&K 4182 and pre-conditioner

B&K 5935 L) which is mounted on a three-dimensional

stage positioning system (OWIS PS35 with accu-

racy 6 100 lm) in order to control the probe position x. All

data are generated (acoustic source, positioning system) and

collected (acoustic probe) on a 16 bit A/D data acquisition

card (NI PCI-MIO 16 XE) with a sampling frequency of

44.15 kHz. In addition, the insulation room temperature is

measured. An overview of the experimental setup is schema-

tised in Fig. 5.

At each measurement position of the acoustic probe, the

acoustic source emits a sinusoidal linear sweep s(t) with dura-

tion 10 s in the frequency range from 3.5 kHz up to 10 kHz.

The acoustic probe is displaced along the tube’s centerline

from its entrance near the communication hole up to 10 mm

downstream from its outlet with spatial step Dx¼ 2 mm.

Experimentally assessed pinching positions xc are

spaced by approximately 25% of the tube length as illus-

trated in Fig. 6. An overview of the experimentally imposed

pinching efforts 1� bxc
=b0 for the different pinching posi-

tions xc is summarized in Table I. All experiments are per-

formed with the screen added to the tube outlet in order to

create a flanged boundary condition.1 Different pinching

efforts (1� bxc
=b0 2 f93%; 77%; 58%g) and pinching posi-

tions (xc 2 f�140 mm;�94 mm;�50 mm;�10 mmg) are

imposed so that the influence of pinching effort and position

can be experimentally evaluated. The unpinched tube in ab-

sence of a pincher (1� bxc
=b0 ¼ 0%) is assessed as well. At

pinching position xc¼�94, experiments are done without

the screen as well (unflanged boundary condition1) so that

the impact of the tube’s outlet boundary condition—flanged

(with screen) versus unflanged (without screen)—can be

experimentally examined at this pinching position.

Furthermore, the case of pinching effort 77% at pinching

position xc¼�94 corresponds to the rigid reconstructed tube

from the stadium-based geometrical tube model (Section

II A 2 and Fig. 4(b)) so that the potential impact of the geo-

metrical model can be experimentally checked for both out-

let boundary conditions.

The cut-on frequency fc of the first higher order acoustical

mode depends on the applied pinching effort 1� bxc
=b0

(Section II A 1) as indicated in Table I. As shown in Fig. 3, the

value of the cut-on frequency for pinching efforts greater than

50% approximates the value for a rectangular cross-section.

FIG. 4. (a) Illustration of geometrical parameters obtained with the stadium-

based tube model with constant perimeter P¼ 2pb0 for different imposed

pinching efforts (1� bxc
=b0 2 f0%; 58%; 77%; and 93%g) applied at

pinching position xc¼�3.6D0 with D0¼ 2b0: data-driven model of minor

axis b(x)/b0 and associated area function A(x)/A0. (b) Illustration of rigid

reconstructed tube for pinching effort 77% using the stadium-based tube

model. The reconstructed tube is presented in the same way as the elastic

tube in Fig. 1.

FIG. 5. Overview of experimental

setup used to measure the acoustic

response p(t, x) of a compressed elastic

tube between two parallel bars (Fig. 1)

or the rigid reconstructed stadium-

based tube model (Fig. 4(b)) to an

acoustic signal s(t) at its entrance

(communication hole 1 2 mm). As an

example, the mounting of the elastic

tube with pincher within the insulation

room is illustrated. The geometry of

the compressed elastic tube is con-

trolled by imposing pinching position

xc and pinching effort 1� bxc
=b0 with

b0¼ 12.5 mm denoting the internal ra-

dius of the uncompressed circular tube.

A screen (37 cm� 37 cm) can be added

to the tube outlet.
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Measured acoustic probe data p(t, x) are analysed as a

function of the instantaneous acoustic source frequency f
and probe position x by computing its amplitude and phase.

The transfer function Hkl between pressures at two different

probe positions (indicated by subscript values k and l)
along the centerline can then be calculated.2 Transfer func-

tions between different tube configurations are compared

by considering their difference DjHklj from which the

mean value, standard deviation, and maximum value are

quantified.

C. Plane wave acoustic model

The geometrical stadium-based tube model presented

in Section II A 2 is applied to determine the longitudinal

area function Aðb0;lÞðx; xc; bÞ for a tube of length l with con-

stant perimeter P¼ 2pb0 and an imposed pinching effort

1 – b/b0 applied at pinching position xc. In addition, the

tube outlet condition is either flanged or unflanged. The

tube inlet and outlet are located at x¼ –l and x¼ 0, respec-

tively (Fig. 6).

The acoustic pressure field inside the tube filled with

quiescent air is described using a plane wave model so that

at each position x and instant t the acoustic pressure is given

as1,11

pðx; tÞ ¼ PðxÞe|xt; (6)

with complex-valued pressure amplitude P(x) and radian fre-

quency x¼ 2pf since it is assumed that the time-dependent

portion varies harmonically. The pressure amplitude P(x) is

the sum of an acoustic wave with amplitude Pþ traveling in

the positive x-direction and an acoustic wave with amplitude

P– traveling in the negative x-direction so that

PðxÞ ¼ Pþe�|kx þ P�e|kx (7)

holds with wavenumber k.

For a plane wave propagating in the positive direction,

the reflection coefficient Rx at a position x is the ratio of the

reflected and incident wave1,11

Rx ¼
P�
Pþ

e2|kx: (8)

The impedance Z is related to the reflection coefficient

R as

Zx ¼ Zc
1þ Rx

1� Rx
; (9)

with characteristic impedance Zc approximated as qc/A(x)

with air density q¼ 1.2 kg/m3 and sound velocity c varies

with air temperature T.10,11

At the outlet of the open tube (x¼ 0), the wave front is

no longer plane and expression (8) for the reflection coeffi-

cient is no longer valid. Instead, in linear acoustics the reflec-

tion coefficient at the tube outlet R0 (x¼ 0) is obtained from

the radiation impedance as5

R0 ¼ �jR0je�2|kd (10)

with d the real part of the so-called end correction defining

the “effective” acoustical length of the tube. Once, the reflec-

tion coefficient is known, the radiation impedance Z0 is

found by applying (9). The real part of the radiation imped-

ance represents the radiation loss.

In the case of a flanged outlet condition (subscript 1 is

added), the modulus of the reflection coefficient R0 and end

correction d are approximated for k~a < 3:5 as8,9

jR0j1 ¼
1þ 0:323 k~að Þ � 0:077 k~að Þ2

1þ 0:323 k~að Þ þ 1� 0:077ð Þ k~að Þ2
; (11)

d
~a

� �
1
¼ 0:8216 1þ 0:77 k~að Þ2

1þ 0:77 k~að Þ

 !�1

: (12)

The unflanged outlet condition accounts for a tube

with finite wall thickness d. The outer radius of the tube
~b ¼ ~a þ d is then defined by the inner radius ~a ¼

ffiffiffiffiffiffiffiffiffi
A=p

p
to which wall thickness d is added. In the theoretical

case of zero wall thickness d¼ 0 (subscript d¼ 0 is

added), the expression of the modulus of the reflection

coefficient jR0j and end correction d are approximated for

k~a < 3:5 as5,7

jR0jd¼0 ¼
1þ 0:2 k~að Þ � 0:084 k~að Þ2

1þ 0:2 k~að Þ þ 0:5� 0:084ð Þ k~að Þ2
; (13)

TABLE I. Experimentally assessed elastic tube configuration expressed by

pinching position xc and pinching efforts 1� bxc
=b0 measured along the

tube’s centerline (�) or omitted (not). Measurements are performed with a

screen attached to the tube’s end and for xc ¼ �94 mm (shaded cells)

repeated in the absence of a screen. The lowest cut-on frequency fc (sound

speed 346 m/s for 25 	C) associated with the stadium shape for each of the

pinching efforts xc is given.

xc ðmmÞ
1� bxc

=b0 �140 �94 �50 �10 fc (kHz)

93% � � � Not 4.5

77% Not �a Not Not 4.9

58% � � � � 5.3

0% � (No pincher) 8.1

aRigid reconstructed tube configuration (Fig. 4(b)).

FIG. 6. Illustration of experimentally assessed pinching positions on the

elastic tube with origin of the x-axis taken at the outlet and the communica-

tion hole (dot) at its inlet: xc (mm) and jxcj=l ð%Þ with tube length

l¼ 184 mm.
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d
~a

� �
d¼0

¼ 0:6127

1þ 0:044 k~að Þ2

1þ 0:19 k~að Þ2
� 0:02 sin2 2k~að Þ; k~a < 1:5;

1þ 0:044 k~að Þ2

1þ 0:19 k~að Þ2
; 1:5 � ~a < 3:5:

8>>>>><
>>>>>:

(14)

In the case of a finite non-zero wall thickness d> 0 (sub-

script d> 0 is added), the expression of the modulus of the

reflection coefficient jR0j and end correction d are approxi-

mated for k~a < 1:5 and k ~b < 3:5 as5,7

jR0jd>0 ¼ jRnoref l þ Redgej; (15)

d
~a

� �
d>0

¼ < d
~a

� �

d>0

( )
; (16)

with

d
~a

� �

d>0

¼ d
~a

� �

1
þ ~a

~b

d
~a

� �

d¼0

� d
~a

� �

1

" #

þ 0:057
~a
~b

1� ~a
~b

� �5
" #

; (17)

using

d
~a

� �

�
¼ d

~a

� �
�
þ | ln jR0ð Þj�Þ

2k~a
for � ¼ 1 and � ¼ d ¼ 0ð Þ;

(18)

and finally

Rnoref l ¼ �e2|k~a l
~að Þ


d>0 ; (19)

Redge ¼ � 0:43
~b � ~að Þ~a

~b
2

sin2 k ~b

1:85� ~a=~b

 !

� e�|
~b 1þ~a=~b 2:3�~a=~b�0:3 k~að Þ2ð Þ½ �: (20)

Using a transmission line principle for impedance

matching, the impedance between neighbouring points xi and

xiþ1 along the positive x-directions yields

Zi

Zc
¼
| tan k xiþ1 � xið Þ þ Ziþ1=Zc

1þ | Ziþ1

Zc
tan k xiþ1 � xið Þ

: (21)

Consequently, since the outlet radiation impedance Z0 is

known, the impedance at each tube position can be deter-

mined. Concretely, the tube’s area function A(x) is discre-

tised in uniform sections of length Dx¼ 1 mm.

The impedance at each x-position inside the tube yields

Z xð Þ ¼ P xð Þ
U xð Þ ; (22)

with uðx; tÞ ¼ UðxÞe|xt the acoustic volume flow rate.

Finally, applying the transmission line principle results in

the following transfer matrix to describe P(x) and U(x)

between neighbouring points xi and xiþ1:

PðxiÞ
UðxiÞ

" #
¼

coskðxiþ1�xiÞ |Zc sinkðxiþ1�xiÞ
|Z�1

c sinkðxiþ1�xiÞ coskðxiþ1�xiÞ

" #

�
Pðxiþ1Þ
Uðxiþ1Þ

" #
: (23)

Consequently, from U(x¼ –l) at the tube’s inlet,

P(x¼ –l) is found from (6) and the acoustic field in the tube

can be determined applying (23). The modeled acoustic field

is analysed the same way as the measured data. Therefore,

since the transfer function jHklj between pressures at two dif-

ferent x-positions (indicated by subscript values k and l) is

analysed, the value for U(x¼�l) can be chosen.

A complex wavenumber k is considered to account for

damping a of the acoustic wave P(x) with

a ¼ �=ðkÞ: (24)

In the low-frequency approximation (k~a � 1) and high

shear numbers Sh ¼ ~a
ffiffiffiffiffiffiffiffiffi
x=�

p
with outlet tube radius com-

puted from the outlet area A(x¼ 0) as ~a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx ¼ 0Þ=p

p
and kinematic velocity of air �¼ 1.5� 10�5 m2/s, visco-

elastic damping is considered by approximating the wave-

number as10

k ¼ x
c

1þ 1� |ffiffiffi
2
p 1

Sh
1þ c� 1ffiffiffiffiffi

Pr
p

� ��

� |

Sh2
1þ c� 1ffiffiffiffiffi

Pr
p � c

2

c� 1

Pr

� ��
; (25)

where Poisson’s ratio c¼ 1.4 for air and Prandtl number

Pr¼ 0.71 for air.

III. RESULTS

A. Unpinched uniform elastic tube as a reference

As a reference, measured and modeled transfer functions

are illustrated in Fig. 7 for the case of a cylindrical uniform

tube (pinching effort 0%) for different tube outlet conditions

(flanged and unflanged). The transfer function measured on

the unflanged case exhibits more prominent maxima and

minima than for the flanged case, but otherwise their shape

is similar. The difference in amplitude might be due to the

lower transmission loss for the unflanged compared to the

flanged case since the real part of the radiation impedance is

lower for the unflanged case (using (15) and (16) with

~a=~b � 0:8) than for the flanged case (using (11) and (12))

for the frequency range considered. The plane wave model

applied to the cylindrical unpinched uniform tube geometry

fits well the experimental data for both outlet conditions up

to the lowest cut-on frequency of about 8 kHz (Table I).

Nevertheless, modeled extrema above 5 kHz are slightly

shifted to higher frequencies compared to the measured

extrema. Possible reasons might be the low-frequency
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approximation (25) of the wavenumber which is no longer

strictly valid for high frequencies (f � 5 kHz) or a potential

impact of higher order modes at frequencies smaller than the

cut-on frequency which was found to exist for rigid circular

replicas.2

Consequently, in the following, measured and modeled

transfer functions will be compared within three frequency

ranges: (1) from 3.5 up to 5 kHz the plane model is likely to

hold even as the cut-on frequency decreases as the tube gets

pinched (Table I), (2) from 3.5 kHz up to 8 kHz for which

the plane wave model is less performant due to the onset of

higher order mode effects, and finally (3) from 3.5 up to

9.5 kHz for which the model is no longer capable to accu-

rately account for all frequencies due to the presence of

higher order mode effects.

B. Elastic and rigid tube for pinching effort 77% and
pinching position 294 mm

Transfer functions for configurations corresponding to a

77% pinched tube at position xc¼�94 mm are presented in

Fig. 8. Measured transfer functions are obtained for the elas-

tic tube as well as for the rigid reconstructed tube following

the stadium-based geometrical tube model as outlined in

Section II A 2. As for the unpinched uniform tube, sharp fre-

quency peaks due to higher order modes are observed on the

measured transfer functions for frequencies above 8 kHz.

The peaks occur at higher frequencies in the case of the elas-

tic tube than in the case of the rigid reconstructed one possi-

bly due to some wall roughness of the rigid tube despite the

high quality of the rapid prototyping. On the other hand, the

transfer function of the elastic tube shows a small discontinu-

ity around 6.4 kHz. This is likely due to a geometrical asym-

metry in the pinched tube with respect to its centerline.1,3

Such a discontinuity is not observed in the case of the rigid

tube since the reconstructed stadium-based model geometry

is fully symmetrical.

The mean, standard deviation, and maximum value of

the difference between transfer functions measured for the

elastic tube and measured for the rigid reconstructed tube is

further illustrated in Fig. 9(a) for a flanged and unflanged

outlet condition. The mean difference (�10 dB) as well as

the standard deviation depends only to a small extent on the

used frequency interval, spatial positions (k, l or m, n), or

outlet condition (flanged and unflanged). The maximum

value of the transfer function difference increases as the fre-

quency interval is extended to more than 8 kHz due to the

presence of the sharp peaks (Fig. 8). In general, the compari-

son of the measured transfer functions between the elastic

tube and the rigid tube supports the use of the stadium-based

tube model.

Modeled transfer functions using the stadium-based geo-

metrical tube approximation are plotted in Fig. 8 as well.

The general shape of measured and modeled transfer

FIG. 7. Transfer functions jHj for the unpinched uniform elastic tube (pinch-

ing effort 0%) for a flanged (with screen) and unflanged (without screen)

outlet condition of measured (exp) and modeled (mod) data: (a) Hkl with k

¼ �174 mm and l ¼ �4 mm, (b) Hm,n with m ¼ �134 mm and n ¼
�54 mm.

FIG. 8. Transfer functions Hk,l with k ¼ �174 mm, l ¼ �4 mm (top) and

downshifted Hm,n with m ¼ �134 mm, n ¼ �54 mm (bottom) for pinching

effort 77% at pinching position xc ¼ �94 measured on the elastic tube

(dashed line) and rigid reconstructed tube (dotted line) and computed for the

stadium-based tube model (full line): (a) flanged and (b) unflanged.

224905-7 Van Hirtum, Blandin, and Pelorson J. Appl. Phys. 118, 224905 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

147.171.69.213 On: Mon, 14 Dec 2015 17:17:33



functions is similar for the flanged as well as the unflanged

outlet condition. The mean, standard deviation, and maxi-

mum value of the difference between the modeled and meas-

ured transfer functions for the elastic and rigid tube are

shown in Fig. 9(b) for two different sets of spatial positions

(k, l and m, n). The order of magnitude of the mean and

standard variation is the same as observed for the elastic and

rigid tube (Fig. 9(a)) which supports the use of the stadium-

based tube geometry to model the acoustic response of the

elastic tube. The maximum difference for the largest fre-

quency interval (3.5 kHz up to 9.5 kHz) is again increased

due to the absence of sharp peaks in the modeled transfer

function whereas they do occur in the measured transfer

functions.

In general, the comparison of measured transfer function

features between the elastic tube and the rigid tube exploit-

ing the stadium-based geometrical model as well as the com-

parison between the modeled transfer function features and

the measured transfer function features, the stadium-based

geometry seems suitable for the case of pinching effort 77%

at pinching position xc ¼ �94 mm.

C. Variation of pinching effort and pinching position
for the elastic tube

Fig. 10 illustrates modeled and measured pressure trans-

fer functions for different pinching efforts at position xc ¼
�94 mm for a flanged and unflanged outlet condition as indi-

cated in Table I. As the pinching effort increases, the mod-

eled transfer function still captures the general shape of the

measured one. Nevertheless, compared to the uniform circu-

lar tube (pinching effort 0%) some discrepancies appear as

the pinching effort is increased mainly due to the onset of

higher order mode propagation at lower frequencies in ac-

cordance with the decreasing cut-on frequency given in

Table I.

FIG. 9. Transfer function difference

DH for as pinching effort of 77% at

position xc ¼ �94 mm in three differ-

ent frequency intervals for DHkl (k ¼
�174 mm, l ¼ �4 mm) and DHm,n (m

¼ �134 mm, n ¼ �54 mm) for a

flanged (left) and unflanged (right) out-

let condition. Empty symbols are the

mean values, bars extend to mean

value 6 standard deviation, and iso-

lated full symbols are the maximum

values: (a) difference between transfer

functions measured on the elastic tube

and on the rigid reconstructed tube, (b)

difference between measured transfer

functions (elastic and rigid stadium-

based reconstructed tube) and com-

puted transfer function using the

stadium-based tube model (model).

FIG. 10. Measured (dashed lines) and modeled (full lines) transfer functions

Hk,l (k ¼ �150 mm, l ¼ �10 mm) for different pinching efforts (0%, 58%,

77%, and 93%) imposed to the elastic tube at position xc ¼ �94 mm: (a)

flanged and (b) unflanged. Transfer functions are shifted down as the pinch-

ing effort increases.
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The mean, standard deviation, and maximum difference

between the modeled and measured transfer function as a

function of pinching effort is plotted in Fig. 11. The mean

value and standard deviation are observed to increase as the

tube is pinched (pinching effort> 0%), but the amount of

increase (�10 dB) varies little with the pinching effort in the

smallest frequency interval from 3.5 kHz up to 5 kHz. This is

an important finding, since it indicates that the stadium-

based geometrical model can be applied regardless the

pinching effort. For pinching efforts of 58% and 77%, the

increase is the same for all frequency intervals, whereas for

93% the increase of the mean value and standard deviation is

more prominent (>10 dB) as the frequency interval is

extended above 5 kHz due to the effect of higher order

modes which are not accounted for in the plane wave model.

For the same reason, the value of the maximum difference

increases in the largest frequency interval from 3.5 kHz up

to 9.5 kHz for all pinching efforts and for pinching effort

93% in the frequency range from 3.5 kHz up to 8 kHz as

well. General findings do not depend on the outlet condition

(flanged or unflanged).

Fig. 12 illustrates modeled and measured pressure trans-

fer functions observed for different pinching positions xc for

a flanged outlet condition when the pinching effort is held

constant to either 93% or 58% as indicated in Table I. The

modeled transfer functions approximate measured transfer

functions although discrepancies are observed.

The discrepancies between the modeled and measured

transfer functions are again analysed as a function of fre-

quency interval by means of its mean value, standard devia-

tion and maximum value plotted in Fig. 13. In the smallest

frequency interval from 3.5 kHz up to 5 kHz, mean differ-

ence values and standard deviations are limited (�10 dB)

which is in accordance with their values found for a variation

of the pinching effort (Fig. 11). Therefore, the stadium-based

geometrical model can be applied regardless the pinching

position. For more extended frequency intervals (from

3.5 kHz up to 8 kHz or 9.5 kHz) mean, standard variation and

maximum values are increased in some cases (e.g., for a

pinching effort of 93%) due to the appearance of higher

order phenomena which are not accounted for in the plane

wave model.

IV. DISCUSSION AND CONCLUSION

Acoustic wave propagation through a pinched elastic

tube is modeled analytically by combining a stadium-based

geometrical tube model with a plane wave assumption. From

FIG. 11. Difference between modeled and measured transfer function DHk,l

for positions k ¼ �150 mm and l ¼ �10 mm for different pinching efforts

(0%, 58%, 77%, and 93%) on the elastic tube at position xc ¼ �94 mm in

three different frequency intervals: (a) flanged tube and (b) unflanged tube.

Empty symbols are the mean values, bars extend to mean value 6 standard

deviation, and isolated full symbols are the maximum values.

FIG. 12. Measured (dashed lines) and modeled (full lines) transfer functions

Hk,l (k ¼ �114 mm, l ¼ �74 mm) for different pinching positions xc

imposed to the elastic tube with a flanged outlet condition: (a) pinching

effort 93% (xc 2 {�140, �94, �50}) and (b) pinching effort 58% (xc 2
{�140, �94, �50, �10}). Transfer functions are shifted down as the pinch-

ing position approaches the tube outlet.
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the comparison between measured and modeled pressure

transfer functions, it is observed that mean values and stand-

ard error of the differences within three frequency bands

(from 3.5 up to 5 kHz, from 3.5 up to 8 kHz and from

3.5 kHz up to 9.5 kHz) do not vary significantly (DH �
10 dB) with pinching effort, pinching position or outlet ter-

mination. Therefore, it is concluded that the geometrical

tube model is suitable to model acoustic wave propagation

through the pinched elastic tube with either flanged or

unflanged termination. The maximum difference, on the

other hand, reflects the presence of higher order modes

(DH> 20 dB) and consequently does depends on pinching

effort and pinching position. The tube’s termination influen-

ces the amplitude of the minima and maxima of the meas-

ured and modeled transfer functions.

The proposed analytical model approach is, in particu-

lar, suitable for applications requiring modeling of acoustic

wave propagation for a large number of geometries at low

computational cost and time or whenever an analytical

model approach is preferred for further model analysis.

Given the large amount of rapidly varying configurations of

the vocal tract geometry during articulation, the outlined

model seems suitable for speech production modeling.

Nevertheless, a more detailed analysis of the measured max-

ima and minima is needed in order to consider the ability of

the proposed device of a pinched elastic tube to reproduce

different speech phonemes in order to conclude that the com-

pressed elastic tube can represent a human vocal tract during

articulation.

Improvement of the pincher design used for the experi-

ments can go two ways. Either its design focusses on ensur-

ing parallel pinching bars. In this case, a symmetrical cross-

section shape (classical stadium as in the geometrical model)

is strived to be realised in order to minimize the potential

impact of higher order transverse acoustic modes. This is,

e.g., of interest when a plane wave model is used which does

not account for higher order modes. On the other hand, the

design of the pincher (no longer parallel pinching bars) can

be developed in order to force a known asymmetry resulting

in a squashed stadium cross-section shape in which case

higher order transverse acoustic modes are favoured. It can

be argued that the presence of geometrical asymmetries is

more realistic or more relevant to biological phenomena

such as application for speech production studies or bioa-

coustics. In both cases, the use of a pincher provides a simple

mean to achieve the wanted effect with few parameters.

Note that the case of a squashed stadium cross-section shape

is a generalisation of the applied symmetrical stadium-based

model so that additional parameter(s) are needed to represent

the asymmetry(s). Furthermore, the applied geometrical

stadium-based model is suitable to provide an estimation of

mechanical parameters when the bending energy is analysed.

This feature might be of interest to develop a mechanical

model in future.
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