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Several engineering problems are confronted with elastic tubes. In the current work, homothetic quasi-analytical geometrical ring
models, ellipse, stadium, and peanut, are formulated allowing a computationally low cost ring shape estimation as a function of a
single parameter, that is, the pinching degree.The dynamics of main geometrical parameters due to the model choice is discussed.
Next, the ring models are applied to each cross section of a circular elastic tube compressed between two parallel bars for pinching
efforts between 40% and 95%.The characteristic error yields less than 4% of the tubes diameter when the stadiummodel was used.

1. Introduction

An accurate description of a constricted channel’s geometry
and related geometrical features is often crucial and, there-
fore, a recurrent problem in different engineering disciplines.
Geometrical featureswill affectmainfluidflowcharacteristics
related to inertia, boundary layer development, flow detach-
ment, or jet formation downstream from the constricted
channel portion [1]. The same way, the accuracy of wave
related problems will depend on the channels or waveguides
geometry since it will influence among others the propa-
gation or evanescence of higher order propagation modes
[2]. Knowledge of the channel geometry is in particular
an obstacle when dealing with natural occurring fluid flow
or wave propagation through elastic channels for which no
geometrical design is possible and in addition the shape can
rapidly vary such as is the case for biological channel flows
(lower and upper airway respiratory or blood circulation
system) and related biomechanical phenomena.

Partly motivated by the large number of applications, a
substantial amount of research is performed (see, e.g., [3–
8]) on elastic tube modeling for a variety of boundary and
loading conditions since the pioneering work [9–11] on thin-
walled elastic tubes. Despite those efforts and the increased
insight in the stability and bifurcation of circular elastic
tubes, no analyticalmodel is capable of providing geometrical
features for channels subjected to rapidly varying loading

resulting in small as well as large deformations of thin as
well as thick wall tubes of variable length. Therefore, in the
currentwork quasi-analytical parameterised geometrical ring
models are used in order to provide geometrical features of a
compressed elastic tube. Although those models do not give
insight in the dynamics of the elastic ring, they do allow,
due to their simplicity, to avoid or overcome some of the
limitations of more advantaged analytical models depending
on boundary conditions (loading, geometry, . . .). Therefore,
when solely the ring shape (or an associated geometrical
parameters) is searched, quasi-analytical geometrical models
might be of interest in providing an estimation of the shape
at a negligible computational cost while the parameteri-
zation favors usage in combination with other analytical
model approaches exploiting a limited number of input
parameters or when an initialization of the ring shape is
needed. This might, for example, be the case for real-life
applications for which the boundary conditions can be either
unknown or rapidly changing. Moreover, for experimental
validation the need to control few well defined geometrical
parameters is attractive. In addition, an analytical expression
of the sensitivity of the modeled shape (or an associated
geometrical parameter) to an uncertainty of the imposed
control parameters might be of interest for experimental
setup characterization or design purposes.

Quasi-analytical ring models are considered using the
minor axis ! as an input control parameter. The pinching
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Figure 1: Illustration of a deformable ring (light grey) with constant wall thickness " compressed between two parallel bars (dark grey) of
length 0 < ##.The internal central ring height yields twice the minor axis 2! and the internal central width yields twice the major axis 2$.The
parallel bars are spaced by 2(% + ") with % = ! for nonbuckled rings and % > ! for buckled rings. (a) Circular (!0 = &/2 and $0 = &/2) ring
with internal perimeter '0 = (& (internal diameter&) and (b) elongated ring (! < &/2 and $ > &/2).
degree of the ring is expressed as 1−!/!0 where the subscript⋅0 refers to values associatedwith a circular ring. For a circular
ring, both the minor !0 and major $0 axis yield half the
internal diameter&.We consider a circular ring with internal
perimeter '0 = (&, which is compressed between two
parallel bars of length 0 < ## as illustrated in Figure 1(a). It is
assumed that the ring has constant wall thickness ". Forcing
the bars closer together (Figure 1(b)) deforms the ring so that
for the ring’s minor axis 0 < ! ≤ &/2 holds, where !0 = &/2
denotes the minor axis of the undeformed circular ring.The
distance between the pinching bars yields 0 < 2(% + ") ≤&+2". Deforming the ring results in an elongated ring shape
so that the area , enveloped by the ring reduces as the bars
are forced closer together. The deformed ring is assumed to
be symmetrical with respect to its center lines containing the
minor and major axis.

Parameterised geometrical ring models are presented in
Section 2 for nonbuckled and buckled rings. Next (Section 3),
a simple data-driven procedure is proposed enabling to apply
the ring models in order to obtain the geometry of an elastic
tube pinched between two parallel bars. A concrete case study
for ## ≫ 2$ is discussed.
2. Geometrical Ring Models
The internal ring shape is modeled using quasi-analytical
elastic ring models which are symmetrical with respect to the
center lines. The main input parameters are the minor axis! and internal diameter & defining the perimeter '0 = (&
of the unpinched circular ring. Consequently, the pinching
degree 0 < 1 − !/!0 ≤ 1 of the ring is assumed a known
quantity. The considered ring shapes are invariant under
homothetic scaling. Therefore, in the following, lengths are
normalised (̃⋅) by the internal diameter& of the circular ring
so that 0 < !̃ = !/& ≤ 0.5, '̃0 = (, and ,̃0 = (/4 are
quantities associated with a circle with unit diameter. Note
that the pinching degree is not altered by the normalisation
since 1 − !/!0 = 1 − !̃/!̃0 = 1 − 2!̃. Furthermore, since
the wall thickness "̃ is assumed constant, the shape of the
external ring 0̃(1, 1 − !/!0) is derived from the shape of the
internal ring as 0̃(1, 1− !̃/!̃0) = 2̃(1, 1− !̃/!̃0)+ sgn(2̃) ⋅ "̃, with
sign function sgn and the ring expressed in polar coordinates
with normalised internal radius 2̃, normalised external radius

2̃, and angle 0 ≤ 1 ≤ 2(. Depending on the length of
the parallel pinching bars ## compared to the length of the
major axis $ buckling of the elastic ring will occur #̃# ≫ 2$̃
(Figure 1) or not #̃# ≪ 2$̃ as the pinching degree 1 − !̃/!̃0 is
increased.Therefore, in Section 2.1, geometrical ring models
are presented which does not allow to describe buckling. In
Section 2.2, a ring model is presented for which buckling of
the elastic ring occurs when the pinching degree 1 − !̃/!̃0
increases.

2.1. Geometrical Nonbuckling Ring Models: Ellipse and Sta-
dium. The internal ring is pinched between long parallel bars
so that #̃# ≫ 2$̃ as depicted in Figure 1. The ring shape is
approximated as an ellipse or a stadium with rounded edges
as illustrated in Figure 2.

2.1.1. Ellipse. For given minor axis !̃ with 0 < !̃ ≤ 0.5, the
elliptic ring shape is fully determined by considering a second
geometrical parameter such as perimeter '̃ or major axis $̃.

When the major axis $̃ and minor axis !̃ are known the
elliptic ring shape in polar coordinates yields [12, 13]2̃%̃,̃! (1) = √ !̃21 − 52cos2 (1) with 5 = √(1 − ( !̃̃$)2), (1)
where 1 ∈ [0, 2(] and eccentricity 5 ≤ 1. The perimeter is
then obtained from the expression of Ramanujan [14]:'̃%̃,̃! = ( [3 ($̃ + !̃) − √($̃ + 3!̃) (3$̃ + !̃)] (2)

and the area yields ,̃ %̃,̃! = (!̃$̃with ,̃ = ,/&2.The sensitivity
of the radius, perimeter, and area to a variation of the imposed
parameters Δ!̃ and Δ$̃ yields
Δ2̃%̃,̃! (1) = BBBBBBBBBB !̃3cos21$̃3 (1 − 52cos2 (1))3/2 BBBBBBBBBB Δ$̃+ BBBBBBBBBB 1 − cos21(1 − 52cos2 (1))3/2 BBBBBBBBBB Δ!̃,Δ'̃%̃,̃! = BBBBBBBBBBBBBB−(( 6$̃ + 10!̃2√($̃ + 3!̃) (3$̃ + !̃) − 3)BBBBBBBBBBBBBB Δ$̃
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+ BBBBBBBBBBBBBB−(( 10$̃ + 6!̃2√($̃ + 3!̃) (3$̃ + !̃) − 3)BBBBBBBBBBBBBB Δ!̃,Δ,̃ %̃,̃! = ($̃Δ!̃ + (!̃Δ$̃.
(3)

When the perimeter is used as a second model input
parameter instead of themajor axis $̃, we assume that its value
is conserved when the elastic ring deforms so that '̃̃! = (
holds for all pinching degrees 1− !̃/!̃0.The elliptic ring shape
in polar coordinates for 1 ∈ [0, 2(] is again of the form (1) for
which eccentricity 5 is only a function of !̃ since using (2) it
follows that2̃̃! (1) = √ !̃21 − (1 − !̃2/$̃2̃!) cos2 (1)

with $̃!̃ = √−20!̃2 + 12!̃ + 36 − 2!̃3 + 12 .
(4)

The area ,̃ yields again ,̃ !̃ = (!̃$̃!̃ or,̃ !̃ = (!̃(√−20!̃2 + 12!̃ + 36 − 2!̃3 + 12) . (5)

The sensitivity of the radius to a variation of the imposed
parameter Δ!̃ yieldsΔ2̃̃! (1)Δ!̃ = 12̃̃! (1) − !̃2̃$2̃!⋅ cos2 (1)2̃3̃! (1) (1 + !̃3$̃!̃ [ 10!̃ − 3√−20!̃2 + 12!̃ + 3 + 2]) , (6)

where the last term expresses the sensitivity of the major axis
to a variation of the imposed parameter Δ!̃ sinceΔ$̃Δ!̃ = −13 ( 10!̃ − 3√−20!̃2 + 12!̃ + 3 + 2) . (7)

Finally, the sensitivity of the area to a variation of the
imposed parameter Δ!̃ for a constant perimeter becomesΔ,̃ !̃Δ!̃ = (2 − 4(!̃3 + ( (−20!̃2 + 12!̃ + 3)1/26

+ (!̃ (−20!̃2 + 12!̃ + 3)−1/212 . (8)

2.1.2. Stadium with Rounded Edges. The stadium shape,
illustrated in Figure 2, consists of two flat portions connected
by circular arcs with radius !̃ so that the minor axis of the
stadium equals the minor axis of the ellipse. The critical
angle M ∈ [0,(/2] is defined by the critical distance Ñ =!̃/ tan(M) ≥ 0, which corresponds to half the extent of the flat
portion in contact with the parallel pinching bars. As for the
ellipse (Section 2.1.1) the stadium shape is fully determined
by considering the minor axis !̃ and a second geometrical
parameter such as perimeter '̃ or major axis $̃.

Firstly, assume that the perimeter '̃ is conserved when
the elastic rings deform so that '̃̃! = ( holds for all pinching
degrees 1−!̃/!̃0. In this case, the stadium ring shape 2̃(1)with
parameters (!̃, '̃ = () in polar coordinates (2̃, 1) is given as a
piecewise function of 1 ∈ [0, 2(]which depends explicitly on
the pinching degree 1 − !̃/!̃0 = 1 − 2!̃:

2̃̃! (1) =
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

!̃
sin (1) , forM ≤ 1 ≤ ( − M,(4 ⋅ (1 − 2!̃) ⋅ ((16(2 ⋅ !̃2(1 − 2!̃)2 − sin2 (1))1/2 + cos (1)) , for − M < 1 < M,
(4 ⋅ (1 − 2!̃) ⋅ ((16(2 ⋅ !̃2(1 − 2!̃)2 − sin2 (1))1/2 − cos (1)) , for( − M < 1 < ( + M,
− !̃
sin (1) , for( + M ≤ 1 ≤ 2( − M,

(9)

where critical angle M!̃ and critical distance Ñ !̃ are a function
of pinching degree 1 − !̃/!̃0 = 1 − 2!̃:M!̃ = arctan( 4( ⋅ !̃1 − 2!̃) ,Ñ !̃ = ( (1 − 2!̃)4 . (10)

The major axis $̃!̃ and area ,̃ !̃ are then expressed by a
linear and, respectively, quadratic function of the imposed
parameter !̃:$̃!̃ = !̃ + ( (1 − 2!̃)4 = (4 + (1 − (2 ) !̃,,̃ !̃ = (!̃2 + 4(!̃ (1 − 2!̃) = (!̃ (1 − 7!̃) . (11)
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Figure 2: Overview geometrical nonbuckling ring models requiring two geometrical input parameters corresponding to a circular ring with
perimeter '̃0 = ( and area ,̃0 = (/4: (a) elliptic cross-section with major axis $̃ and minor axis !̃ indicated and (b) stadium with rounded
edges with minor axis !̃ and critical angle M indicated from which the critical distance Ñ = !̃/ tan(M) can be derived.

Consequently, the sensitivity of the major axis Δ$̃!̃ and
area Δ,̃ !̃ to a variation of the imposed parameter Δ!̃ results
in, respectively, a constant and a linear function of !̃:Δ$̃!̃Δ!̃ = 1 − (2 ,

Δ,̃ !̃Δ!̃ = 2( (2 − 7!̃) ,
(12)

whereas the sensitivity of the radius to a variation of the
experimental imposed parameter Δ!̃ is again expressed by a
piecewise function of 1:

Δ2̃̃! (1)Δ!̃ =
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

1
sin (1) , for M ≤ 1 ≤ ( − M,16!̃ − 2(2 (1 − 2!̃) sin2 (1)4√16!̃2 − (2 (1 − 2!̃)2 sin2 (1) − (2 cos (1) , for − M < 1 < M,
16!̃ − 2(2 (1 − 2!̃) sin2 (1)4√16!̃2 − (2 (1 − 2!̃)2 sin2 (1) + (2 cos (1) , for ( − M < 1 < ( + M,
− 1
sin (1) , for ( + M ≤ 1 ≤ 2( − M,

(13)

which 2̃̃! (9) depends explicitly on the pinching degree 1−!̃/!̃0
or 1 − 2!̃.

Next, the major axis $̃ instead of the perimeter '̃ is used
as a second known geometrical parameter in addition to the

minor axis !̃.The stadium ring shape 2̃̃!,%̃(1) with parameters(!̃, $̃) in polar coordinates (2̃, 1) is again a piecewise function
of 1 ∈ [0, 2(]:

2̃̃!,%̃ (1) =
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

!̃
sin (1) , for M ≤ 1 ≤ ( − M,
√!̃2 − $̃2 (1 − !̃2̃$2) sin2 (1) + ($̃ − !̃) cos (1) , for − M < 1 < M,
√!̃2 − $̃2 (1 − !̃2̃$2) sin2 (1) − ($̃ − !̃) cos (1) , for ( − M < 1 < ( + M,− !̃
sin (1) , for ( + M ≤ 1 ≤ 2( − M.

(14)

Therefore 2̃̃!,%̃ (14) does not depend explicitly on the
pinching degree (1 − 2!̃), as was the case for (9), but it does depend explicitly on the critical distance Ñ = $̃ − !̃ and the

stadium eccentricity 5 = √1 − !̃2/$̃2. The perimeter '̃̃!,%̃ and
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area ,̃ !̃,%̃ are, respectively, a linear and quadratic function of!̃ and depend linearly on $̃ as well:'̃̃!,%̃ = 2!̃ (( − 2) + 4$̃,,̃ !̃,%̃ = 4$̃!̃ + !̃2 (( − 4) . (15)

Consequently, the sensitivity of the perimeter Δ'̃̃!,%̃ and
area Δ,̃ !̃,%̃ to a variation of the input parameters Δ$̃ and

Δ!̃ is, respectively, constant and linearly dependent on !̃ and$̃: Δ'̃̃!,%̃ = 2(Δ!̃ + 4Δ$̃,Δ,̃ !̃,%̃ = 4!̃Δ$̃ + (2 (( − 4) !̃ + 4$̃) Δ!̃. (16)

The sensitivity of the radius to a variation of the experi-
mentally imposed parameter Δ!̃ is a piecewise function of 1:

Δ2̃̃!,%̃ (1) =
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

1
sin 1 , for M ≤ 1 ≤ ( − M,BBBBBBBBBBBBB !̃cos2 (1)√(!̃2 − $̃2) sin2 (1) + !̃2 − cos (1)BBBBBBBBBBBBB [Δ$̃ + Δ!̃] , for − M < 1 < M,BBBBBBBBBBBBB $̃sin2 (1)√(!̃2 − $̃2) sin2 (1) + !̃2 + cos (1)BBBBBBBBBBBBB [Δ$̃ + Δ!̃] , for ( − M < 1 < ( + M,1
sin 1 , for ( + M ≤ 1 ≤ 2( − M,

(17)

which depends explicitly on the stadium eccentricity since(!̃2 − $̃2) = −52$̃2.
2.1.3. Comparison of Ellipse and Stadium Ring Models with
Perimeter (. The geometrical ellipse and stadium ring mod-
els with the assumption of constant perimeter '̃ = ( are fully
determined as a function of a single parameter. We consider
the minor axis !̃ as a parameter since it is directly related to
the pinching degree 1−!̃/!0 and therefore a control parameter
for ring deformation regardless of the applied model. Single
parameter models are in particular of interest to be used in
combination with other analytical flow or acoustic models
which require a geometrical ring (or cross-section) parameter
such as major axis $̃ or enveloped area ,̃. Therefore, in
Figure 3 we consider the impact of the applied geometrical
ring model in absence of buckling (ellipse or stadium) on
these parameters as a function of pinching degree 1 − !̃/!0.
Following (11) the normalised major axis $̃ of the stadium
ring model increases linearly (Figure 8(c)) as a function of
pinching degree 1−!̃/!0 whereas the normalised area ,̃ of the
stadium model decreases quadratically (Figure 8(d)). From
(4) and (5) we deduce that the ring model results in the same
tendencies for major axis $̃ (maximum difference between
ellipse and stadium for all pinching degrees <0.1) and area,̃ (maximum difference between ellipse and stadium for all
pinching degrees <0.05), although the increase for $̃ is not
linear as is the case for the stadium model. Major axis $̃
of the ellipse is longer than the value of stadium model so
that the area ,̃ enveloped by the ellipse is smaller than the
area enveloped by the stadium model.The relative difference
between the stadium and ellipse model for major axis $̃ and
area ,̃ is further illustrated in Figure 3(c). Where the models

are equivalent for both extreme pinching degrees, associated
with a circular cross section in absence of pinching (1 −!̃/!0 = 0% and $̃ = !̃0 = 0.5) and a completely pinched
ring (1 − !̃/!0 = 100% and cross-section area ,̃ = 0), the
maximum difference (<12%) of major axis $̃ between the
ellipse and stadium model occurs for a pinching degree of
52% whereas the maximum difference (<7%) between both
models for area ,̃ occurs for a pinching degree of 66%. The
sensitivity of major axis Δ$̃ and area Δ,̃ to a variation of
minor axis Δ!̃ is illustrated in Figures 3(d) and 3(e). It is
seen that Δ$̃ ≤ Δ!̃ so that for both the ellipse and stadium$̃ varies less than !̃ (maximum difference for all pinching
degrees between ellipse and stadium <0.8). For the stadium,
the variation of $̃ is independent from the pinching degree 1−!̃/!0 following (12). For the ellipse, $̃ becomes less sensitive to
a variation of !̃ as the pinching degree increases as expressed
in (7). For small pinching degrees the impact of a variation
of !̃ on the area ,̃ is small (Δ,̃ ≤ Δ!̃ for pinching degrees≤17% for the ellipse and ≤32% for the stadium). As the
pinching degree increases the impact of a variation of Δ!̃ on
the area becomes more important. In general, the impact of
a variation of !̃ on the area is of the same order of magnitude
for the ellipse and the stadium (maximum difference for
all pinching degrees <0.7). Nevertheless, the area using the
stadium ring is less sensitive to a variation Δ!̃ than when
an ellipse is used for pinching degrees ≤60%; for pinching
degrees >60% the opposite holds. The ellipse and stadium
ring shape 2̃(1) and associated sensitivity to a variation of
minor axis Δ2̃(1) are illustrated in Figure 4(a) for a pinching
degree of 50%. As expressed in (6) and in (13) the sensitivity
depends on the angle so that it is of interest to consider a
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ã

(—
)

0 50 100
1 − b̃/b̃0 (%)

<0.1

ã0
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<7%

52%
<12%

66%

0 50 100
1 − b̃/b̃0 (%)

(c) |%̃) − %̃*|/%̃0 and |(̃) − (̃*|/(̃0

0

0.5

1
Δã
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Figure 3: Impact of applied geometrical ring models in absence of buckling, ellipse (full line in ((a), (b), (d), and (e)) and subscript 5 in (c))
and stadium (dashed line in ((a), (b), (d), and (e)) and subscript [ in (c)), on normalised major axis $̃ and normalised area ,̃ as a function of
pinching degree 1 − !̃/!0 with the maximum difference indicated on each subfigure (<⋅): (a) major axis $̃ and $̃0 = 0.5 (thin dash-dot line),
(b) area ,̃ and ,̃0 = (/4 (thin dash-dot line), (c) difference between stadium model (subscript 5) and ellipse (subscript [) relative to the
circular value for major axis $̃ (with a maximum difference for pinching degree 52%) and area ,̃ (with a maximum difference for pinching
degree 66%), (d) sensitivity of major axis Δ$̃ to a variation of minor axis Δ!̃ (switch of most sensitive model for pinching degree 91%), and
(e) sensitivity of area Δ,̃ to a variation of minor axis Δ!̃ (switch of most sensitive model for pinching degree 60%).The maximum difference
is indicated as <⋅.
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axis Δ!̃ as a function of pinching degree 1− !̃/!0: (a) example for pinching degree 50%, (b) maximum value of Δ2̃(1), and (c) mean sensitivityΔ2̃(1).
globalmeasure of the ring shape to a variation of !̃.Therefore,
the maximum value of Δ2̃(1) and mean sensitivity Δ2̃(1) for
the entire ring as a function of pinching degree 1 − !̃/!0
are plotted in Figures 4(b) and 4(c), respectively. In contrast
to the sensitivity of $̃, which decreases or remains constant
for increasing pinching degree as shown in Figure 3(d),
both global measures indicate that the overall sensitivity of
the shape increases with the pinching degree. Whereas the
mean sensitivity increase remains limited (<3), themaximum
sensitivity increase is more important since it yields up to>5 times the variation imposed on Δ!̃ for both the ellipse
and the stadium. As was observed for the area , and major
axis $̃ the stadium ring model is more sensitive than the
elliptic ring model to a variation of !̃ for severe constriction
degrees (≥60%). The observed maximum difference (>1
for pinching degrees >65%) is more of less averaged out
since the difference in mean sensitivity between both ring
models remains small (<0.3) regardless of the pinching
degree.

2.2. Buckling Ring Model: Peanut. In Section 2.1, two geo-
metrical ring models with low computational cost were

considered. Both models reduced to a single parameter ring
model of the minor axis !̃ when applying the assumption
of conservation of the perimeter '̃. In this section, a quasi-
analytical elastic peanut ring models is outlined. Analytical
elastic ring models are expected to become pertinent when
the length of the parallel pinching bars (see Figure 1) reduces
(## < 2$) so that the loading becomes axial and buckling is
likely to occur [4, 6].

2.2.1. Peanut. Each quarter of the peanut ring with center \̃
consists of two arc portions as schematised in Figure 5. The
peanut ring is then expressed as a function of the radius ]̃ of
the outer arc (with origin \̃1) and ^ twice the angle spanned
by the inner arc (with origin \̃2) so that the peanut parameter
set is (]̃, ^).The peanut ring model is suitable to approximate
nonbuckled (!̃ ≥ ]̃) and buckled (!̃ < ]̃, second mode)
elastic rings.The assumption of conservation of perimeter is
made so that the normalized perimeter of the total peanut
equals the perimeter of the circular tube '̃ = ( and
consequently the quarter peanut has a constant length (/4.
The total curvature of each quarter peanut yields (/2. The
minor axis !̃ ≤ 0.5 and major axis $̃ ≥ 0.5 of the nonbuckled
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Figure 5: Illustration of nonbuckled ((a), inner arc curvature is positive) and buckled ((b), inner arc curvature is negative) quarters of peanut
rings with center \̃ and parameter set (]̃, ^). Each ring consists of two arc portions: outer arc (thick gray line) with origin \̃1 and radius ]̃ and
inner arc (thick black line) with origin \̃2 and angle ^/2.The major axis $̃ ≥ 0.5 and minor axis !̃ ≤ 0.5 of the peanut are indicated. For the
nonbuckled (a) and buckled peanut (b) !̃ ≥ ]̃ and !̃ < ]̃ hold, respectively.
and buckled peanuts are obtained from parameter set (]̃, ^)
as

non-buckled: !̃ = ( (1 − 2]̃) 1 − cos (^/2)2^ + ]̃,
$̃ = ( (1 − 2]̃) sin (^/2)2^ + ]̃, (18)

buckled: !̃ = (( (1 − 2]̃)2^ + ]̃) (cos 2̂ − 1)+ ]̃ cos 2̂ ,$̃ = ( (1 − 2]̃) sin (^/2)2^ + 2]̃ sin 2̂+ ]̃.
(19)

The area ,̃(]̃, ^) of the total peanut is given as

,̃ = (]̃ − (]̃2 + (24 (1 − 2]̃)2 a (^) ,
with a (^) = ^ − sin ^^2 . (20)

Note that for ^ = 0 the last term in (20) is omitted sincea(^ = 0) = 0.The bending energy of the quarter peanut yields14 Ẽ = ( − ^2]̃ + ^2( − 2 (( − ^) ]̃ , (21)

with Ẽ(]̃, ^) denoting the bending energy of the total peanut.
The bending energy (21) is then used to express the Lagrange

functional L associated with the energy of deformation of
the peanut ring as a function of (]̃, ^) as well:1

B
L = ( − ^]̃ + ^2(/2 − (( − ^) ]̃+ b(D̃2 − (216 (1 − 2]̃)2 (1 − (a (^))) 12( , (22)

with isoperimetric difference of the quarter peanut D̃2 =((/4)2 − (,̃/4 (0 ≤ D̃), normalized pressure b = 8P/B
denoting the ratio of hydrostatic pressure P, and flexural
rigiditymodulus of the ringB = Υ"̃3/12(1−]2)usingYoung’s
modulus Υ, Poisson’s ratio ], and normalised wall thickness"̃.

For a given ,̃, it is aimed to find the peanut defined
by parameter set (]̃, ^) which minimises the bending energy
Ẽ. When using the normalised pressure b as a Lagrange
multiplier b, the constrained minimisation problem satisfies
the Euler-Lagrange equations in terms of (]̃, ^, b):0 = (]̃ − (/2 − 2^]̃((/2 − (( − ^) ]̃)2 + 14b]̃2 1 − (a (^)( − ^ ,0 = −2((/2 − (( − ^) ]̃)2 + 14b]̃a. (^) ,

]̃ = 2( ((4 − D̃√1 − (a (^)) ,
(23)

where the prime denotes the derivative with respect to ^.The
system (23) is then solved firstly by eliminating b(]̃, ^) using
the first two expressions of (23)b = 8]̃a. (^) ((/2 − (( − ^) ]̃)2 . (24)
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The resulting expression (24) is resubstituted in (23) to
find ^ satisfying0 = 2]̃a. (^) ((/2 − (( − ^) ]̃)2

+ (( − ^) ((]̃ − (/2 − 2^]̃)]̃2 (1 − (a (^)) ((/2 − (( − ^) ]̃)2 . (25)

Equation (25) is solved by substituting ]̃(^) given by
the last equation of (23) so that a single equation for ^ is
obtained, from which in turn the parameter ]̃ is obtained
straightforwardly.

Once ]̃ and ^ are determined for given ,̃, the polar
equation of the corresponding peanut 2̃/̃,0(1) with center \̃
taken as the origin is directly given as a piecewise function
describing two connected arc portions with centers \̃1 and \̃2
as depicted in Figure 5:

BBBBB2̃/̃,0 (1)BBBBB = {{{{{{{{{
]̃, 1 ∈ [0, ( − ^2 ] with \1 = (((/2 − (]̃)^ + 2]̃) sin 2̂ ,(((/2 − (]̃)^ + ]̃) , 1 ∈ [( − ^2 , (2 ] with \2 = (((/2 − (]̃)^ + 2]̃) cos 2̂ . (26)

Instead of imposing the normalised area ,̃, the pinching
degree 1 − !̃/!0 can be used as a constrain parameter
using the expression of the minor axis (19). The relationship
between normalised area ,̃ and pinching degree 1 − !̃/!0
is depicted in Figure 6(a). It is seen that the peanut is fully
pinched (1 − !̃/!0 = 100%) when the area ,̃ yields about
25% of ,̃0. Pinching degrees greater than 100% result in
nonphysical peanut shapes since it corresponds to a negative
value of the minor axis !̃ and are therefore not considered
further. The onset of buckling occurs for pinching degrees
greater than 54% (or areas smaller than about 70% of,̃0) so that for those pinching degrees the value of the
parameter ]̃ is greater than the minor axis !̃ as illustrated in
Figure 6(b).

The Euler-Lagrange equations (23) can be seen as a
mapping function g : (]̃, ^, b; ,̃) h→ R3 for which the param-
eter vector j = (]̃, ^, b) is determined for each ,̃ by solvingg(j; ,̃) = 0. Consequently, an expression for the modulus
of deformation of the peanut k = "b/", is computed by
applying the chain rule to find the derivatives lj1/l, and
furthermore using Cramer’s rule as [15]:k = 1

det (lg2/lj1)
⋅ BBBBBBBBBBBBBBBBBB

A% A! 0
A3 A4 0(24 (1 − 2]̃) [1 − (a (^)] (316 (1 − 2]̃)2 a. (^) (

BBBBBBBBBBBBBBBBBB ,
(27)

with matrix

(lg2lj1) =
[[[[[[[[[[

A% A! ]̃2 (1 − (a (^))4 (( − ^)
A3 A4 ]̃a. (^)4(24 (1 − 2]̃) [1 − (a (^)] (316 (1 − 2]̃)2 a. (^) 0

]]]]]]]]]]
, (28)

where

A% = −(2/2 + (2]̃ − 3(]̃^ + 2]̃^2((/2 − (( − ^) ]̃)3 + 12b]̃1 − (a (^)( − ^ ,
A! = 2]̃2^((/2 − (( − ^) ]̃)3+ 14b]̃2 [1 − (a (^)(( − ^)2 − (a. (^)( − ^ ] ,

A3 = −4 (( − ^)((/2 − (( − ^) ]̃)3 + 14ba. (^) ,
A4 = 4]̃((/2 − (( − ^) ]̃)3 + 14b]̃a.. (^) .

(29)

Figure 7(a) illustrates the increase in normalised pressureb(], ^)when the normalised peanut area ,̃ is decreased from
the value of a circle with unit diameter (,̃0) to complete
closure (,̃ = 0) following (24). The resulting modulus of
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deformation k as a function of normalised pressure b is
shown in Figure 7.

2.2.2. Comparison of Peanut and Nonbuckling Ring Models
with Perimeter (. Examples of ring shapes obtained using
the elliptic, stadium, and peanut ring model for pinching
degrees of 30% and 80% are illustrated in Figures 8(a) and
8(b), respectively.The resulting rings are relatively similar for
30% for which the peanut ring is nonbuckled whereas for
80% the peanut ring buckles so that the difference between
the peanut shape and the other ring models becomes more
pronounced. The impact of the model choice is further
quantified as a function of pinching degree 1− !̃/!̃0 for major
axis $̃ (Figure 8(c)) and enveloped area ,̃ (Figure 8(d)). It is
seen that for the nonbuckled peanut shapes corresponding to
pinching degrees ≤54% the major axis and area of the peanut
yields values in the range between the ones obtained with
the elliptic and stadium model. Indeed, the peanut model
results in values of $̃ and ,̃ similar to the elliptic model for
low pinching degrees (≤15%) and gradually evolves towards

values obtained with the stadium model as the pinching
degree is increased from 15% to 54%. Consequently, for
pinching degrees ≤54% the difference between the modeled
ring values for $̃ and ,̃ increases with pinching degree due
to the increasing difference between the elliptic and stadium
ring model which yields <12% for $̃ and <7% for ,̃ (see
Figure 3(c)). For pinching degrees >54% the peanut ring is
buckled compared to the nonbuckled rings obtained with
the elliptic and stadium model. As a result, the difference
between modeled values of $̃ and ,̃ obtained with the
nonbuckling elliptic and stadium models reduces as the
pinching degree increases whereas the difference between the
nonbucklingmodels and the buckled peanut model increases
with pinching degree up to 45% for $̃ and up to 25% for ,̃.
3. Application to an Elastic Tube with ## ≫ 2$
It is aimed to evaluate if the two-dimensional ring models
outlined in the previous sections can be applied to model a
three-dimensional elastic tube which is pinched somewhere
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buckling is depicted (see Figure 6(b)).

along the longitudinal direction using a simple data-driven
procedure. The parallel pinching bars have a length larger
than twice the major axis so that ## ≫ 2$ holds regardless
of the pinching degree. Consequently, it is aimed to model
each cross-section as a two-dimensional nonbuckled ring
with constant perimeter which is equal to the perimeter of the
unpinched circular tube. Therefore, all previously discussed
ring models (ellipse, stadium, and peanut) can be applied
when one additional parameter, that is, local pinching degree,
is known at each cross section. The longitudinal variation of
the pinching degree is expressed as follows: 1 − !(j)/!0 since
the minor axis ! depends on the longitudinal dimension j.
The tube’s geometry, the gathering of geometrical data, and a
simple data-driven procedure to apply the two-dimensional
(2D) ring models to model a three-dimensional (3D) tube
geometry are outlined in Section 3.1. The comparison of
modeled and measured geometrical tube features is then
presented in Section 3.2.

3.1. Extension from 2D Ring Models to 3D Tube Models: A
Data-Driven Procedure. Geometrical data are acquired for
a cylindrical elastic tube of length # = 184mm in the
longitudinal j-direction with wall thickness 3mm and the
internal diameter of the undeformed cylindrical tube yields
25mm. The tube is equipped with a pincer at longitudinal

position j3 = 90mm. Concretely, the pincer consists of
two parallel circular bars of diameter 6.4mm oriented along
the %-axis which enforces a symmetrical deformation of the
tubes cross-section shape with respect to its center-plane.The
elastic tube with pincer is illustrated in Figures 9(a) and 9(b).

In order to obtain geometrical data, the tube is mounted
on a turning platform controlled by a step motor with
accuracy 1.8∘. At each rotational position a longitudinal
profile of the tube is quantified using a calibrated line laser
scan [16, 17]. The turning platform with mounted tube and
single longitudinal laser line is illustrated in Figure 9. At the
position of the pincer j3 buckling is hindered due to the
condition ## ≫ 2$. Consequently, the distance between the
parallel bars yields 2(!8! + ") and the minor axis !8! is a
known quantity at the pincer position j3. The pincher effort
is expressed by the imposed pincher degree at j = j3 defined
as 1−!8!/!0 with !0 = 12.5mmas before denoting the internal
radius of the unpinched cylindrical tube.

Concretely, longitudinal profiles are assessed for 6 differ-
ent pincher efforts 1 − !8!/!0 in the range from 40% up to
95% [16, 17]. In order to model the 3D tube using the 2D ring
models the minor axis need to be estimated for each cross
section so that the required ring model parameter 1−!8/!0 is
a known quantity.This way the 2D ringmodels can be applied
to each cross section of the 3D tube resulting in an elliptic,
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resulting in the longitudinal j profile as a function of platform turning angle.

stadium, or peanut tube approximation.Therefore, firstly, the
minor (!) and major ($) axis are extracted as a function
of longitudinal position 0 ≤ j ≤ # from the measured
longitudinal profiles. Next, the following parameters of the
measured longitudinal profiles are extracted: the amplitude
at the pincer position j3 of the major axis $8! ≥ !0, the half
width at half maximum amplitude of the major axis x%, and
of the minor axis x!. The parameter values obtained from
the 6 assessed pinching degrees are plotted in Figure 10(a)
($8!) and in Figure 10(b) (x%,!). Polynomial fits are applied to
the measured parameters in order to estimate the parameter
values for pinching degrees in the range from 40% up to
95%. Concretely, a linear fit is used to estimate the maximum
amplitude $8! as a function of pinching degree 1 − !8!/!0
(coefficient of determination 02 > 0.99). A second order
polynomial fit is used to approximate the half width at
half maximum amplitude of the major axis x% (coefficient
of determination 02 > 0.72) and the half width at half
maximum amplitude of the minor axis x! (coefficient of
determination 02 > 0.81) along the longitudinal direction
as a function of pinching degree in the range from 40%
up to 95%. The polynomial parameter fits are shown in
Figures 10(a) ($8!) and 10(b) (x%,!).

Using the polynomial parameter fits for $8! , x%, and x!
as a function of pinching effort 1 − !8!/!0 illustrated in
Figure 10, the longitudinalminor !(j) andmajor $(j) axis are
subsequently approximated by symmetrical peak functions
centered around the position of the pincer j3 and function
of the applied pincer effort 1 − !8!/!0:$(8! ,%"! ,9#) (j) = !0 + !0 ⋅ ($8!!0 − 1)⋅ exp(− ln 2 ⋅ (j − j3)2x2% )

with $8! (!8!) and x% (!8!) ,
(30)

!(8! ,!"! ,9$) (j) = !0 − !0 ⋅ (1 − !8!!0 )⋅ ((j − j3)2x2! + 1)−1
with x! (!8!) .

(31)

An example of the measured and estimated $(j) and !(j)
using the data-driven procedure to obtain the parameters
needed to apply (31) is illustrated in Figure 10(c). It is seen that
the tube deforms symmetrically around the pincer position
over a total length of 8 × !0 which corresponds to 4 times the
internal diameter of the circular tube. Following this simple
procedure, the considered 2D ring models can be applied to
each cross section of the tube for pinching efforts in the range40% < 1 − !8!/!0 < 95% using (31) and the assumption of a
constant perimeter 2(!0.
3.2. Ring Model Selection: Comparison of Modeled and
Measured Data Features. The simple data-driven procedure
presented in Section 3.1 is applied to the tube for all 6
experimentally assessed pinching efforts 1−!8!/!0 in order to
comment on the relevance of the geometrical ring models to
estimate the tube geometry for different pinching degrees and
the potential impact of the model choice between the elliptic,
stadium, and peanut ring models.

We are particularly interested in validating the longitudi-
nal major axis $(j) since, as argued in the introduction, this
parameter impacts for instance physical phenomena related
to wave propagation. Figure 11(a) presents the modeled and
measured values of $8!(1 − !8!/!0) for all of the considered
ring models for pinching efforts in the range from 40% up to
95%.The linear increase of $8! with pinching effort 1 − !8!/!0
characterizing the stadiummodel reflects the experimentally
observed tendency. In particular, the rate of increase is well
representedwhen using the stadiummodel whereas the offset
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axis !(j) (+) for pincher effort 1 − !8!/!0 of 94%.

is overestimated so that $8! is slightly (less than 5% of !0)
overestimated for all pinching efforts. The elliptic model
results in a much more severe overestimation (up to 20% of!0) for all pinching degrees so that solely on the estimation
of $8! the elliptic model can be rejected. The stadium model
does not exhibit the experimentally linear increase of $8! with
pinching effort. Nevertheless, for pinching efforts smaller
than 70% the accuracy of estimated values of $8! is of the
same order ofmagnitude as obtained using the peanutmodel.
For pinching efforts greater than 54%buckling starts to occur
which results in a severe underestimation (up to 20% of !0)
of $8! . Consequently, solely based on the estimation of $8! ,
it can be argued that the ring model pick order is stadium,
peanut, and elliptic. In general, the discrepancy between
the modeled longitudinal j profile and the measured profile
along the corresponding laser lines (such as the one depicted
in Figure 9(c)) is less than 7% of !0 (or less than 4% of the

tubes diameter) when applying the stadium ring model to
each cross section with the local pinching degree computed
using the peak function approximation of !(j) as expressed
in (31).The discrepancy between themeasured and estimated
longitudinal stadium profiles is illustrated in Figure 11(b) for
pincher effort 1−!8!/!0 = 94%using the local pinching degree
associated with !(j) plotted in Figure 10(c).

4. Conclusion

The minor axis of an elastic ring compressed between two
parallel bars is directly related to the imposed pinching
degree. Therefore, homothetic quasi-analytical geometrical
ring models (ellipse, stadium, and peanut) are formulated for
a circular ring with unit diameter as a function of pinching
degree using the assumption of a constant perimeter. All three
ring models reflect the same general tendencies for pinching
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degrees up to 54%. Therefore, the dynamics due to model
choice for pinching degrees ≤ 54% is limited (e.g. ≤7% for
the area and ≤12% for the major axis) and is determined
by the difference between an elliptic and stadium ring since
the peanut ring evolves gradually from elliptic (≤15%) to
stadium (at 54%). For pinching degrees greater than 54%, the
peanut ring starts to buckle. As a consequence, the dynamics
of geometrical features related to the model choice becomes
more important (e.g. ≤25% for the area and ≤45% for the
major axis).

Next, the ring models are applied to each cross section of
an elastic circular tube compressed between two parallel bars
for different pinching efforts between 40% and 95%. A simple
data-driven procedure is used to provide the local pinching
degree required as an input parameter. Overall, the stadium
ring model provides the best approximation of the tube with
a characteristic error yielding less than 4% of the tubes diam-
eter. Moreover, the experimentally observed linear increase
of the major axis with the pinching effort is an inherent
property of the stadium model. Consequently, the case study
illustrates that the outlined quasi-analytical models, such as
the stadium model, can provide an accurate and computa-
tional low cost approximation of the tubes geometry suitable
for applications such as geometry initialisation, combination
with other parameterised physical/mathematical models or
experimental setup design, and validation purposes as a
function of pinching degree.
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