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Analytical  flow  models  are  frequently  applied  when  describing  constricted  channel  flow  at  low  and
moderate  Reynolds  numbers.  A  common  assumption  underlying  such  flow  models  is two-dimensional  or
axi-symmetrical  flow.  In  this  work,  two analytical  model  approaches  are  formulated  in order  to  overcome
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this  assumption  in  the  case  of naturally  occurring  channel  flows  for which  the assumption  might  be
critiqued.  Advantages  and  flaws  of both  model  approaches  are  discussed  and their  outcome  is compared
with  experimental  data.

©  2017  Elsevier  Ltd. All  rights  reserved.
hysiological flow

. Introduction

Many applications rely on simplified laminar models to obtain
n estimation of quasi-steady flow through constricted channels
t a low computational cost. For low or moderate Reynolds num-
ers, viscous flow effects, which are known to depend on the
ross-section shape [1,2], potentially affect the flow field. Never-
heless, common simplified models often rely on the assumption of
wo-dimensional or axi-symmetrical flow so that the cross-section
hape is neglected. Imaging studies of naturally occurring con-
tricted channel flows, such as physiological flow through blood
essels or airways, revealed a large variation of channel’s cross-
ection shapes so that the assumption of two-dimensional (2D) or
xi-symmetrical flow can be questioned for these applications [3].
n the following, two analytical flow models are considered which
ccount for the cross-section shape of the constricted channel por-
ion so that both result in ‘quasi-three-dimensional’(quasi-3D) flow

odels. The first model (boundary layer model) makes the assump-
ion of developing boundary layers whereas the second model
viscous model) relies on the asymptotic case of fully developed
oundary layers.

. Constricted channel flow

Pressure driven quasi-steady flow through a constricted channel

Fig. 1) is considered. A uniform circular channel (area A0) envelops

 constricted portion with minimum constriction (area Ac, length
c, hydraulic diameter D = 4Ac/P with P the wetted perimeter) for

E-mail address: annemie.vanhirtum@grenoble-inp.fr

ttp://dx.doi.org/10.1016/j.mechrescom.2017.05.006
093-6413/© 2017 Elsevier Ltd. All rights reserved.
which viscous effects can not be neglected. All corners are rounded
(radius ra). Flow is then generated by imposing upstream pressure
P0 so that the total driving pressure difference yields �P = P0 − Pd
with downstream pressure Pd = 0. Jet formation occurs near the
downstream end of the constricted region (xs) where the flow sep-
arates from the channel wall. The pressure distribution P(x, t) along
the constricted channel portion (x0 ≤ x2) is sought for a known value
of upstream pressure P0.

Experimental data are obtained as described in [4]. Concretely,
upstream pressure P0, pressure P1 at the middle of the constriction
(x/Lc = 0.5) and volume flow velocity � are measured. In addition,
spatial velocity profiles u are measured along (longitudinal – u(x))
and perpendicular (spanwise – u(y)) to the main flow direction.
Mean values are considered which are derived on 5 s of steady sig-
nal for the measured pressure signal P(t) and volume flow rate �(t)
and on 40 s for velocity u(t).

3. Quasi-3D analytical laminar flow modeling

Low or moderate Reynolds number quasi-steady airflow (kine-
matic viscosity � = 1.5 × 10−5 m2/s and density � = 1.2 kg/m3) is
considered so that the flow within the constriction is assumed lam-
inar and incompressible. The no-slip boundary condition is applied
on the rigid channel walls. Volume flow velocity � is conserved so
that d�/dx = 0. Two cases are considered based on the ratio of con-
striction length to the entrance length of the constriction required
to obtain fully developed viscous flow [1,2]. In the first case (Sec-

tion 3.1), Lc is short or comparable to the entrance length of the
constricted portion so that viscous boundary layers develop within
the constriction. Downstream from the constriction pressure recov-
ery due to flow mixing is accounted for so that the expanding jet

dx.doi.org/10.1016/j.mechrescom.2017.05.006
http://www.sciencedirect.com/science/journal/00936413
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Fig. 1. Illustration of pressure driven flow through a uniform circular channel (area
A0) enveloping a constricted portion (area Ac , hydraulic diameter D and length
Lc). Sharp edges are rounded (radius ra). Main streamwise direction x, pressure
upstream from the constriction P0, pressure downstream from the constriction Pd ,
flow separation position xs , upstream unconstricted channel portion length (Lu)
and  downstream unconstricted channel portion length (Ld) are indicated. A non-
expanding stable straight jet (full lines) with infinite potential core extent x∞
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flow, results in P(x, t) = P downstream from flow separation (x ≥ xs).
 developing jet (dashed curved lines) with finite potential core extent xpc (shaded
rea) are depicted.

as a finite potential core xpc (Fig. 1). In the second case (Section
.2), Lc is long compared to the entrance length of the constricted
ortion so that fully developed boundary layers are accounted for.
low separation is discussed in Section 3.3.

.1. Boundary layer model

A simple boundary layer flow model is proposed account-
ng for a developing boundary layer enveloping the core flow
egion. Pressure recovery due to flow mixing of the jet issued
rom the constriction with the surrounding fluid downstream from
he constriction is accounted for using conservation of mass and

omentum over the mixing region:

jAj = u2A2, (1)

u2
2A2 = PjA2 + �Aju

2
j , (2)

here subindex j and 2 indicate respectively the jet region (cross-
ectional area Aj, velocity uj and pressure Pj) and the region
ownstream from the mixing zone (cross-sectional area A2 = A0,
elocity u2 and pressure P2 = Pd = 0). The jet cross-sectional area Aj
s given as

Aj
Ac

=
(

1 − 2ı1

D

)2

or
Aj
Ac

≈ 1 − 4ı1

D
since

2ı1

D
< 1, (3)

ith ı1 the displacement thickness of the boundary layer approx-
mated as the value for a flat plate of length Lc associated with a
lasius velocity profile [2]:

1 ≈ 1.7

√
LcD

Reref
, (4)

here reference Reynolds number Reref = Duref
� is defined using

ydraulic diameter D and reference velocity uref =
√

2P0
� . An esti-

ation of the pressure within the jet Pj yields

Aj
(

Aj
)

Pj
P0

=
−2 A2

1 − A2

1 − 2Aj
A2

(
1 − Aj

A2

) (5)
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and the pressure drop �Pc = Pc − Pj becomes

�Pc
P0

= P0 − Pj
P0

(
1 −

A2
j

A2
c

)
. (6)

The pressure within the constriction is then estimated as P(0 ≤ x ≤
Lc) ≈ Pj + x�Pc

Lc
so that the pressure at the center (x/Lc = 0.5) of the

constriction is approximated as P1 ≈ Pj + �Pc
2 .

The centerline velocity u within the constriction (0 ≤ x ≤ Lc), i.e.
in the core flow region outside the boundary layer, is estimated by
approximating the area A(x) following (3) and (4) as

A(x)
Ac

=
(

1 − 2ı1(x)
D

)2

with ı1(x) ≈ 1.7

√
xD

Reref
(7)

so that

u(x) ≈ �

A(x)
(8)

with volume flow velocity � estimated as

� ≈ uref · ¯A(x), (9)

where ¯A(x) indicates the mean value of A(x) within the constric-
tion using (7). Consequently, flow quantities within the constriction
are estimated using a single input parameter (upstream pressure
P0) while accounting for the cross-section shape by its hydraulic
diameter D. Note that downstream from the constriction within the
potential core of the jet (Lc < x ≤ xpc) both the velocity and pressure
can be considered constant so that u(x) ≈ �

Aj
and P(x) ≈ Pj.

3.2. Viscous model

The streamwise momentum equation of the governing
Navier–Stokes equation for driving pressure dP/dx is approximated
using volume flow velocity conservation d�/dx = 0 as [4,5]:

−�
2

A3

dA

dx
+ 1
�

dP

dx
= �

(
∂2
u

∂y2
+ ∂

2
u

∂z2

)
, (10)

with spanwise direction y, transverse direction z and velocity u(x,
y, z). The flow model expressed in (10) accounts for viscosity (right
hand term) as well as flow inertia (first source term at the left
hand side) and depends therefore on the area as well as on the
shape of the cross-section. It is seen that for a uniform channel, so
that dA/dx = 0 holds, (10) reduces to purely viscous flow [5,2]. The
same way, it is seen that (10) reduces to Euler’s equation describing
Bernoulli flow when viscosity is neglected, i.e. � = 0 as for an ideal
inviscid flow [2].

The pressure distribution P(x, t) as a function of streamwise posi-
tion x and time t up to flow separation (x0 ≤ x ≤ xs) is then given
by integration of (10) [5,4] and results in a quadratic equation of
volume flow velocity �:

P(x, t) = P0 + 1
2
��2

(
1

A2(x0)
− 1
A2(x, t)

)

+ ��

∫ x

x0

dx

ˇ(x, t)
, if x0 ≤ x < xs,

(11)

with dynamic viscosity of the fluid � = �� and  ̌ expressing the
viscous contribution to the pressure drop so that it depends on
the cross-section shape. The assumption of a stable non-expanding
straight jet with infinite potential core extent x∞

pc , i.e. non-viscous

d

From (11) is seen that the model adds a viscous correction (last
righthand term) to the steady Bernoulli equation [1,2] which relies
on the asymptotic expression for fully developed viscous flow.
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Fig. 2. Measured (e – symbol) and modeled (boundary layer model (bl – full line) and viscous model (vi – dashed line) for P0 = 35 Pa for each cross-section shape (circle (cl
– sure distribution Px/P0 and measured pressure P1 at x/Lc = 0.5, (b) normalised spanwise
v l velocity profile u/umeasmax . The constricted flow channel portion corresponds to the shaded
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Table 1
Overview of geometrical parameters (see Figs. 1 and 5).

Circle Ellipse Circular sector

D [cm] 1 0.67 0.72
w  [cm] 1 2.24 1.73
 top), ellipse (el – middle) and circular sector (cs – bottom)): (a) normalised pres
elocity  profile downstream the constriction u/umeasmax and (c) normalised longitudina
rea.

herefore (11) is a generalisation of an extensively applied 2D
odel [6] flow for an arbitrary cross-section shape.

At flow separation (x = xs and A = As) P(xs, t) = Pd, so that volume
ow velocity � can be estimated from (11) as:

� =
[
�

∫ xs

x0

dx

ˇ(x, t)
+

{(
�

∫ xs

x0

dx

ˇ(x, t)

)2

+ 2(P0 − Pd)�(1/A2
s − 1/A2(x0))

}1/2
]

× [�(1/A2
s − 1/A2(x0))]

−1
.

(12)

nce � is known, P(x, t) along the constricted channel portion is
hen estimated using (11).

Note that the velocity profile within each cross-section of the
hannel u(y, z) can be approximated using the streamwise momen-
um Eq. (10). When applying the no-slip condition (u = 0) on the
igid channel walls this can be rewritten as a classical Dirichlet
roblem which can be solved numerically for an arbitrary cross-
ection shape or analytically for specific cross-section shapes using
.g. separation of variables. Analytical solutions for a given cross-
ection shape can be written as:

(y, z) = �
˛(y, z)
ˇ

,  (13)

ith ˛(y, z) expressing the velocity-dependence to the spatial posi-
ion within the cross-section. Concrete expressions of  ̌ and  ̨ for
articular cross-section shapes (circular, elliptic and circular sec-
or) are given in Appendix A.

.3. Flow separation model

Pressure recovery is accounted for in the boundary layer model
Section 3.1) so that is reasonable to neglect delayed flow separa-
ion (xs = x2 − ra and As = Ac) when the curvature ra of the trailing
dge of the constriction is small compared to the largest cross-
ectional dimension. The viscous model (Section 3.2) does not
ccount for downstream pressure recovery so that a flow sepa-
ation model is required to account for delayed flow separation

nd jet formation along the rounded trailing edge of the constric-
ion in order to determine xs ≥ x2 − ra and As ≥ Ac. Concretely, an
d-hoc geometrical criterion is used to determine the position of
et formation for the viscous model as As = cs × Ac with cs = 1.1 [6].
h  [cm] 1 0.45 0.9

Ac = 0.79 cm2, Lc = 2.5 cm, ra = 0.05 cm.

This criterion neglects the dependence of the flow separation posi-
tion on Reynolds number [7,2,1], but its use in combination with a
2D viscous model has been extensively used and validated for the
range of Reynolds numbers of interest [6]. Its use allows to focus
solely on the influence of the cross-section shape.

4. Results

Airflow through a constricted channel (Fig. 1) is considered for
three different cross-section shapes (circular, ellipse and circular
sector) detailed in Appendix A. Geometrical parameters of each
cross-section shape are summarised in Table 1. Constriction length
Lc is smaller than the entrance length for each cross-section shape
so that boundary layers are developing. The curvature ra is at least a
factor 5 smaller than the largest dimension of the constriction. Ana-
lytical solutions obtained using the boundary layer model (Section
3.1) and the viscous model (Section 3.2) are compared to measured
values: pressure (P1 at the center of the constriction), longitudi-
nal (x-axis) velocity profiles, spanwise (y-axis) velocity profiles
immediately downstream from the constriction and volume flow
velocity � [4]. Dimensions are within the range for which the
2D viscous model is commonly applied. Therefore, although that
strictly speaking the viscous model is not applicable since bound-
ary layers are still developing, both model outcomes are compared
to experimental data.

Fig. 2 illustrates measured and modeled values or pressure and
velocity for P0 = 35Pa for all three cross-section shapes. The mod-
eled pressure distribution along the channel geometry (Fig. 2(a))
shows that the pressure within the constriction decreases as a func-
tion of streamwise position for both models although the slope is

more steep for the boundary layer (bl) model. Downstream from
the constriction the boundary layer model provides a qualitative
estimation of the constant pressure profile whereas the viscous
(vi) model provides only information within the constriction due
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o the erroneous assumption of a straight jet so that the pressure
ownstream the constriction equals the pressure at the channel
xit Pd = 0. It is seen that both models provide a good approxi-
ation (<10%) of the measured pressure P1 in the middle of the

onstriction for all assessed cross-section shapes. Consequently, the
oundary layer model and the viscous model combined with the
d-hoc separation criterion provide an estimation of the pressure
istribution within the constriction. The maximum velocity of mea-
ured spanwise velocity profiles (Fig. 2(b)) in the core region of the
ow corresponds well with values predicted using Blasius’ laminar
oundary layer profile (<1%) for all assessed cross-section shapes
hereas it is overestimated by the viscous model (up to 100%).
n the other hand the velocity profile within the boundary layer is
aptured by the viscous model for all assessed cross-section shapes
hereas the boundary layer approach can not predict asymmetri-

al boundary layer development since only the hydraulic diameter
f the cross-section shape is accounted for and not its precise
hape. Longitudinal core flow velocity profiles predicted with the
oundary layer model are seen to approximate (<5%) measured

ongitudinal velocity profiles (Fig. 2(c)).
The model outcome within the constriction is then validated for

ifferent pressure ratios P1/P0 and associated volume flow veloci-
ies � as a function of bulk Reynolds number Re = Dub,c

� with bulk
elocity within the constriction ub,c = �/Ac. Experimental results
how that the cross-section shape influences the pressure ratio up
o 10% (Fig. 3(a)) showing the impact of the cross-section shape. The
ressure ratio decreases with Reynolds number within the lami-
ar flow regime (Re � 7500). For higher Reynolds number the flow
ecomes transitional or turbulent so that assessed models are not
xpected to hold. Measured volume flow velocity � varies up to
0% for Re ≤ 104 as a function of the cross-section shape (Fig. 3(b)).

Modeled and measured values of pressure ratio P1/P0 and vol-
me  flow velocity � as a function of bulk Reynolds number Re ≤ 104

re plotted in Fig. 4. For 4000 ≤ Re ≤ 7500 both flow models provide
 good estimation (<10%) of the pressure ratio for all cross-section
hapes (Fig. 4(a)). In general, it is seen that the boundary layer
odel and viscous model underestimate and overestimate the

ressure drop, respectively. When the Reynolds number decreases

he discrepancy between the boundary layer model and measured
alues increases whereas the discrepancy with the viscous model
emains the same. This is partly expected due to the decrease in
oundary layer thickness with Reynolds number, so that the vis-

ig. 4. Measured (e – symbol) and modeled (boundary layer model (bl – full line) and v
ross-section shape (circle (cl – top), ellipse (el – middle) and circular sector (cs – bottom
Fig. 3. Measured values as a function of bulk Reynolds number Re for each cross-
section shape (circle (cl – top), ellipse (el – middle) and circular sector (cs – bottom)):
(a) normalised pressure distribution Px/P0 and (b) volume flow velocity �.

cous model becomes more pertinent and the boundary layer model
becomes less suitable. However, it is important to keep in mind that
the viscous model predictions rely on the value of the ad-hoc sepa-
ration constant cs of the used separation model whereas no model
constant is used in the boundary layer model. Increasing the sepa-
ration constant value from cs = 1.1 to cs = 1.2 decreases the pressure
ratio with about 20% for all assessed Reynolds numbers. Conse-
quently, the separation constant can be seen as a model tuning
parameter whose value depends on the streamwise constriction
geometry, i.e. in particular the trailing edge curvature, so that it is

preferable that measurements are available to set its value. Over-
all although, the estimation of the pressure ratio with the viscous
model is surprisingly accurate given the underlying asymptotic
assumption of developed boundary layers. Volume flow velocities

iscous model (vi – dashed line) as a function of bulk Reynolds number Re for each
)): (a) normalised pressure distribution Px/P0 and (b) volume flow velocity �.



A. Van Hirtum / Mechanics Research Communications 83 (2017) 53–57 57

Table  2
ˇ and  ̨ for cross-section shapes depicted in Fig. 5. Geometrical parameters (w, h, A) depend on streamwise position x.

Shape  ̌ ˛(y, z)

Circle A2

�8
w2

4 − (y2+z2)
4

Ellipse w2A3

(�2w4+16A2)
1
2
w2h2

w2+h2

(
1 − y2

w2 − z2

h2

)
Circular sectora,b,c w4

4

[
tan 2A/w2−2A/w2

4 − 512A4

�5w8

∑∞
n=1,3,...

1

n2(n+4A/�w2)2(n−4A/�w2)

]
− 1

4

[
r2

(
1 − cos 2	

cos ϕ

)
− 16w2ϕ2

�3 ×
∑∞

n=1,3,...
(−1)

n+1
2

(
r
w

) n�
ϕ cos(n�	/ϕ)
n(n+2ϕ/�)(n−2ϕ/�)

]
a Infinite sum is limited to n ≤ 60.
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[6] M.  Deverge, X. Pelorson, C. Vilain, P. Lagree, F. Chentouf, J. Willems, A.
b Opening angle ϕ = 2A/w2.
c Polar coordinates (r, 	): r =

√
y2 + z2 and 	 = tan−1 z

y .

stimated from the boundary layer model matches measured val-
es (<10%) whereas estimations resulting from the viscid model
verestimate measured �-values up to 40% (Fig. 4(b)). This is in
greement with earlier findings related to the spanwise velocity
rofile (Fig. 2(b)). Indeed, the core flow velocity was  overestimated
ith the viscous model leading to an overestimation of � whereas

he core flow velocity was estimated accurately with the boundary
ayer flow model leading to an more accurate estimation of �.

. Discussion and conclusion

Two analytical laminar model approaches are proposed which
ake into account the cross-section shape and viscosity. This way
oth models can be used as a simple flow model in case the common
D or axi-symmetrical flow assumption does not hold and informa-
ion on the cross-section shape is available. For constrictions which
re shorter than the entrance length, the boundary layer model
an be used. It is shown that it provides a quantitative estimation
<10%) of the pressure within the constricted portion as well as of
he volume flow velocity. This model has the advantage that it does
ot rely on ad-hoc model parameters. Furthermore, the boundary

ayer model provides an analytical model approach available for
ny cross-section shape since it relies only on the hydraulic diam-
ter, which can e.g. be obtained using standard imaging techniques
or contour and area detection. Moreover, the core velocity of the
ow within the constriction is estimated accurately whereas asym-
etries in the velocity profile can not be predicted since only the

ydraulic diameter is used to characterise the cross-section shape.
t is noted that the accuracy of the viscous model depends on the
alue of the ad-hoc separation constant, which is therefore a cru-
ial model parameter. Furthermore, analytical expressions for the
iscous solution are only available for a limited number of cross-
ection shapes so that an arbitrary cross-section shape requires
umerical solution of the Dirichlet problem associated with vis-
ous flow, which excludes this model when a purely analytical
pproach is sought. Nevertheless, analytical solutions do exist for
ommon shapes, such as the ones assessed here, and the result-
ng estimation of the pressure within the constricted portion is
urprisingly accurate (<10%) since strictly speaking the underlying
ssumption of fully developed viscous flow does not hold given the

ength of the constriction. The same assumption of developed vis-
ous flow also leads to an overestimation (40%) of the volume flow
elocity and core flow velocity when the viscous model is applied.
evertheless, it is seen that the velocity in the boundary layers is

[

accurately modeled for all assessed cross-section shapes since the
cross-section shape is used as an input parameter, i.e. not only its
hydraulic diameter. Consequently, when velocity profiles perpen-
dicular to the main flow direction are of interest, both models can
be combined to obtain an accurate estimation within the boundary
layer and within the core region. Finally, it is noted that the vis-
cous model is of special interest for problems dealing with laminar
flow through long channels so that the boundary layers are fully
developed such as flow through blood veins.

Appendix A. Analytical solution of viscous model

Geometrical parameters of particular cross-section shapes
(Fig. 5) and associated values of  ̌ and  ̨ (Table 2) of analytical
solutions for the viscous model [5] are indicated.

Fig. 5. Schematic front view and area A for circle (cl), ellipse (el) and circular sec-
tor (cs). Spanwise extent w (y-direction) and transverse extent h (z-direction) are
indicated.
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