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On quasi-steady laminar flow separation in the upper airways
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SUMMARY

Accurate prediction of the position of flow separation along a constriction is important to model fluid–
structure interaction phenomena in the upper airways such as phonation and obstructive sleep apnea.
Flow assumptions underlying common flow descriptions along the upper airways are formulated. Flow
separation positions obtained from theories with different degrees of complexity are qualitatively and
quantitatively discussed. In particular, geometrical and flow features determining the influence of viscosity
are varied. Increasing the constriction degree and the constriction length is shown to affect the position
of flow separation. Boundary layer solutions and simulations with the two-dimensional Navier Stokes
equations result in an accurate quantitative prediction of flow separation. Furthermore, Jeffery–Hamel flow
solutions qualitatively predict the effect of both constriction height and length on the position of flow
separation. The ad hoc assumption applied in quasi-one-dimensional flow descriptions does not accurately
predict flow separation. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Flow separation along the diverging part of a constriction is an important phenomenon when
dealing with fluid–structure interactions. The upper airways anatomy extends from the glottis up
to the lips and contains several constricted portions depending on the articulator positions. The
interaction between soft tissues along constricted upper airway sites and respiratory airflow leads
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Figure 1. Characteristic variation of cross-sectional glottal profile during phonation, the
arrow indicates the flow direction [1].

to some common daily and nightly life phenomena in normal as well as pathological upper airway
conditions.

For healthy speakers, phonation or voiced sound production is due to a fluid–structure interaction
between the vocal folds and expiratory airflow resulting in a rapid change of the glottal area as
depicted in Figure 1 [1]. An example of a fluid–structure interaction occurring under pathological
conditions is obstructive sleep apnea/hypopnea (OSA) [2]. OSA is characterized by intermittent
cessation of breathing during sleep due to recurrent collapses of the pharyngeal airway. These
collapses typically occur in pharyngeal airway portions with reduced cross-section e.g. between
the tongue and hard palate [3].

Because, as will be demonstrated later, flow separation depends on the constriction geometry,
the volume flow velocity is directly affected by its position. Furthermore, the pressure forces
Fwall, exerted by the airflow on the surrounding pharyngeal walls, depend on the location of flow
separation along the pharyngeal constrictions since

Fwall=
∫ separation

inlet
p(x̄)dx̄ (1)

Consequently, determination of flow separation is necessary in order to model upper airway
phenomena as the varying glottal cycle during phonation or the collapse during OSA. Flow models
with different degrees of complexity and accuracy are assessed in literature reflecting a trade-off
between simplicity, accuracy, computational cost and physiological relevance. In general, limited
computational cost and accuracy are important conditions for applications in clinical practice [4].

Simplified one and quasi-one-dimensional flow models are used in low-order physical vocal
folds models to simulate phonation and estimate important phonation quantities, as e.g. auto-
oscillation frequency and phonation onset threshold, at a minimum computational cost [5–7]. Two-
dimensional flow models allow to increase the model accuracy while computational cost remains
limited [8–12]. Important contributions to three-dimensional steady and unsteady modelling of
flow through bifurcating lung branches and realistic oropharynx geometries with respect to quiet
respiration are presented in a.o. [13–16].

In [15] it is concluded that locations of narrow flow passage should be the focus of any study
aiming at understanding the human upper airway collapse. The need for experimental validation
of flow simulations is stressed in [17]. Most simulation efforts deal with averaged geometries
obtained during quiet breathing, consequently systematic variation of the constricted passage and
flow conditions is of interest. Three-dimensional modelling of the impact of the geometry and
flow circulation on the flow development with finite element modelling seems promising [18–21].
In particular, automatic mesh adaptation, as proposed in [18], is of interest considering modelling
of the total fluid–structure interaction involving varying geometrical configurations in space and
time. Nevertheless, the computational load of accurate three-dimensional modelling, requiring a
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large amount of meshes, should not be underestimated and seems at current date out of reach for
clinical applications.

The current study considers prediction of flow separation from steady two-dimensional laminar
flow models with varying complexity. Important geometrical quantities such as constriction degree
and length are varied. In addition, flow conditions are varied in a range significant to the upper
airways during OSA and phonation. The assessed flow models are motivated and outlined. An
experimental setup suitable for in vitro flow validation on mechanical replicas is presented and
model predictions are discussed.

2. FLOW MODELLING IN THE UPPER AIRWAYS

2.1. In vivo geometry and flow conditions

Typical in vivo geometrical and flow conditions relevant for phonation and OSA are quantified in
Table I. Based on the given orders of magnitude a dimensional analysis is performed. This yields a
set of non-dimensional numbers that can be interpreted as a measure of the importance of various
flow effects from which several flow assumptions can be formulated [23].

Following the characteristic aspect ratio (h/W �1) the flow is assumed to be characterized
by a bi-dimensional (2D) flow description in the (x, y)-plane with h being a typical minimum
aperture and W a typical width. The resulting geometry is schematically presented in Figure 2.
The geometry depicts the glottis during phonation, both walls are curved due to the presence
of the vocal folds. In case the geometry represents the upper airways in supine position during
OSA, the curvature is limited to the upper wall representing the tongue and the flat bottom wall
represents the hard palate. Velocities involved during respiration and phonation are small compared
with the speed of sound in air, so that the flow is assumed to be incompressible, i.e. squared
Mach number Ma2�1. Furthermore, the airflow is considered as primarily steady due to the low
Strouhal number (Sr �1). Finally, as a first approximation, the flow is assumed to be inviscid

Table I. Characteristic in vivo geometrical and flow conditions for phonation and OSA [9, 22].
Fluid properties of air

�0 Mean density 1.2kgm−3

�0 Dynamic viscosity coefficient 1.5×10−5m2 s−1

co Speed of sound 350ms−1

OSA
Los Tongue length 5 cm
Wos Pharyngeal width 3 cm
hos Minimum aperture 2mm
Uos Flow velocity 8ms−1

fos Breathing frequency 0.25Hz
phonation
Lgl Glottal length 6–9mm
Wgl Glottal width 14–18mm
hgl Glottal height 0–3mm
Ugl Flow velocity 10.40ms−1

fgl Fundamental frequency of oscillation 100–200Hz
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Figure 2. Schematic representation of the geometry with circular constriction of diameter d . The
x-dimension indicates the flow direction. 0, M and s denote the positions of origin, minimum aperture and
flow separation along the channel. The corresponding heights h0, hM and hs (y-dimension) are indicated.

Table II. Non-dimensional numbers and flow assumptions: aspect ratio, Mach
number Ma, Strouhal number Sr, Reynolds number Re0.

OSA Phonation Assumption

Aspect ratio hos/Wos�1 hgl/Wgl�1 Two-dimensional
Ma2 10−4�1 10−2�1 Incompressible
Sr 10−3�1 10−2�1 Steady
Re0 103�1 103�1 Inviscid

considering characteristic Reynolds numbers (Re0�1). Non-dimensional numbers and resulting
assumptions are summarized in Table II for phonation and OSA.

2.2. Viscosity and flow separation

Although it can be neglected for the bulk flow considering Reynolds numbers Re0, the occurrence
of flow separation due to viscosity strongly influences the flow development. Therefore, flow
separation cannot be neglected. In the studied flow models, the position of flow separation is
determined either by an empirical ad hoc assumption or predicted based on vanishing wall shear
stress, �(x)=0, along the diverging portion of the wall where the flow is retarding, with

�(x)=�0

(
�u
�y

)
y=wall

(2)

and u(x, y) the flow velocity within the boundary layer.

2.3. Bernoulli with ad hoc viscosity correction

Under the assumptions of one-dimensional, laminar, fully inviscid, steady and incompressible flow,
one-dimensional Bernoulli’s equation can be used to estimate the pressure and velocity distribution
within a constriction. Bernoulli’s equation is unable to account for flow separation and turbulent
jet formation downstream of the minimum aperture hM [24]. This phenomenon, resulting from
very strong viscous pressure losses, must be taken into account in order to predict a pressure drop
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along the constriction from one-dimensional Bernoulli theory. Therefore, an empirical criterion is
required. The area associated with flow separation As is ad hoc set to As =cAM , i.e. hs =chM
with c�1 the separation coefficient, for the 2D geometry with area A(x)=Wh(x) as shown in
Figure 2 [22]. The pressure distribution along the flow direction p(x) is then derived from the
upstream pressure p0 and the geometry h(x) as,

p(x) = p0+ 1

2
�

�2

W 2

(
1

h20
− 1

h(x)2

)
(3)

� = As

√
2p0
�

(4)

where p0 is the upstream pressure, � the fluid density, � the volume flow rate and h0 the upstream
channel height before the constriction. The volume flow rate is assumed to be constant along the
constriction, i.e. �=U (x)A(x)=U (x)Wh(x)=constant. Accounting for h0�hM and considering
the pressure on the position of minimum aperture pM results in:

pM = p0(1−c2) (5)

Consequently, introducing an ad hoc constant c determines both the position of flow separation
as well as the maximum pressure drop. Note that for the one-dimensional Bernoulli theory the
position of maximum pressure drop coincides with the position of minimum aperture. Equation (5)
can be used to estimate the constant c in order to match a measured pressure drop p0− pM .

A quasi-one-dimensional flow description is obtained when further accounting for viscous effects
in case of small Reynolds numbers. Small Reynolds numbers appear for small apertures hM , e.g.
toward closure in the glottal cycle or severe OSA. In order to account for viscosity, a Poiseuille
term is added to Equation (3):

p(x)= p0+ 1

2
�

�2

W 2

(
1

h20
− 1

h(x)2

)
−12�

�

W

∫ x

0

dx

h(x)3
(6)

The upstream pressure p0 corresponds physiologically with the subglottal pressure in case of
phonation or with the oral pressure in case of OSA. The quantities hM and pM correspond,
respectively, to the aperture and the pressure at the minimum constriction point x=M . The
straightforward physiological interpretation of the model quantities and limited computational cost
are important arguments in favor of this simplified model approach. Moreover, the described flow
model, with the ad hoc assumption in order to describe a movable flow separation position as a
function of hM , in combination with reduced mechanical models yields qualitative and quantitative
predictions of important phonation characteristics, such as the minimum upstream pressure required
to sustain auto-oscillations or the oscillation fundamental frequency [7]. The ad hoc constant c is
commonly varied between 1.1 and 1.5 [22, 25].

2.4. Jeffery–Hamel self-similar flow

In this section flow between straight non-parallel walls with half-angle � is considered assuming
steady, laminar, two-dimensional, radial, incompressible and viscous flow in absence of external
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forces. With these assumptions and radial velocity u(r,�) the continuity equation and Navier Stokes
equations in polar coordinates (r,�) reduce to:

�ur
�r

= −ur
r

(7)

�ur
�ur
�r

= −�p
�r

+�

{
�
�r

(
�ur
�r

+ ur
r

)
+ 1

r2
�2u

��2

}
(8)

0= −�p
��

+ 2�

r

�u
��

(9)

for which exact self-similar Jeffery–Hamel solutions can be obtained [23, 26–28]. Primarily because
of the non-linearity of the differential equations multiple solutions are possible. In spite of the
limiting assumptions, multiple solutions are of particular interest with respect to flow in the upper
airways, since both symmetrical flow with separation and asymmetrical flow attachment to one of
the walls are experimentally observed and extensively reported [29–34].

The equation of continuity can only be satisfied if the product rur is independent from �.
Therefore with F(�) a normalized velocity profile function of �=�/�:

F(�)= u(r,�)

umax(r)
(10)

the momentum equations reduce to the non-linear ordinary differential equation for the normalized
velocity profile F(�):

F ′′′+2�Re FF ′+4�2F ′ =0 (11)

with the boundary conditions:

F(−1)=0, F(0)=1, F(1)=0 (12)

The Reynolds number

Re= umaxr�

�
(13)

is independent of r since umax∝1/r . The non-linear equation (11) can be solved either analytically,
in terms of elliptical functions, or numerically, by a finite difference factorization scheme, for a
given half-angle � and Reynolds number Re. The skin-friction coefficient cf is obtained from the
solution F(�) as

cf= 2|�w|
�u2max

= 2|F ′(1)|
Re

(14)

So F ′(1) is a measure for the skin-friction coefficient. For diffusers and considering the slender-
channel parameter�Re>0 in the limit Re→∞ the skin-friction coefficient vanishes at�Re=10.3.
Therefore, although Jeffery–Hamel solutions are self-similar and cannot show flow separation, they
are extremely suggestive in showing reversed flow near the walls for �Re>10.3. Jeffery–Hamel
solutions are used to approximately compute the flow in symmetric plane channels with weakly
curving walls as well as to study flow stability [27, 35, 36].
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2.5. Boundary layer solution

In the (quasi)-one-dimensional approach viscosity is either neglected (Equation (3)) or corrected
for with an additional Poiseuille term, assuming fully developed Poiseuille flow (Equation (6)).
However, at high Reynolds numbers Re0, the region in which viscous forces are important is
confined to a thin layer adjacent to the wall, referred to as laminar boundary layer. Outside the
boundary layer, the inviscid irrotational main flow, with velocity U (x), is described by Bernoulli’s
equation (3). The resulting boundary layer theory is described by the Von Karman momentum
integral equation for steady flows [28]. An approximated method to solve this equation for laminar,
incompressible, bi-dimensional (x, y) boundary layers is given by Thwaites method [37–39]. Two
shape parameters are introduced

H(	) = 
1

2

(15)

S(	) = �

2
U

(16)

which are only functions of the velocity profile determined by the acceleration parameter 	≈
dU/dx
2 with wall shear stress �(x), displacement thickness 
1,


1(x)=
∫ ∞

0

(
1− u(y)

U

)
dy (17)

and momentum thickness 
2,


2(x)=
∫ ∞

0

u(y)

U

(
1− u(y)

U

)
dy (18)

The Von Karman equation is then approximated by:


22(x)U
6(x)−
22(0)U

6(0)∝
∫ ∞

0
U 5(x)dx (19)

Equation (19), in combination with the fitted formulas for H(	) and S(	) tabulated in [37], enables
to compute the searched pressure distribution p(x) up to the flow separation point xs, where
�(xs)=0, for a given input pressure and known geometry. Moreover, the point of flow separation
xs is numerically estimated, as separation is predicted to occur at 	(xs)=−0.0992 [22]. Therefore,
no ad hoc assumption needs to be made to account for flow separation, while the computational
cost remains low.

2.6. Two-dimensional Navier Stokes

The two-dimensional continuity and Navier Stokes equations for steady, laminar and incompressible
flow are

�ux
�x

+ �uy

�y
= 0 (20)

�0

(
ux

�ux
�x

+uy
�ux
�y

)
= −�p

�x
+�

(
�2ux
�x2

+ �2ux
�y2

)
(21)
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�0

(
ux

�uy

�x
+uy

�uy

�y

)
= −�p

�y
+�

(
�2uy

�x2
+ �2uy

�y2

)
(22)

where ux and uy denote the velocity component in the x and y dimension, respectively [28].
For reasons of symmetry, the upper half of the flow domain is discretized in finite elements and
the commercial finite element software ADINA CFD is used as a solver [12, 40]. The upstream
pressure p0 is applied at the inlet. The no-slip boundary condition is set to the rigid wall, while
the symmetry centerline is treated as a slip wall. The mesh density is increased in the constriction
in order to accurately predict flow separation by considering vanishing wall shear stress.

3. EXPERIMENTAL SETUP

To enable in vitro experimental validation of the predicted pressure distribution, the setup schemat-
ically depicted in Figure 3 is used. Steady flow is provided by a valve controlled air supply (A)
connected to a pressure tank of 0.75m3 (B) enabling to impose an airflow through a rigid constric-
tion replica (D,E). An upstream pipe (C) of 95 cm connects the replica with the pressure tank.
Pressure transducers (Endevco 8507C, Kulite XCS-093) are positioned in pressure taps upstream
of the replica (F) and at the minimum constriction (G) in order to measure upstream pressure p0
and pressure at the constriction pM . The volume airflow rate � is measured (TSI4000) upstream of
the replica (H). The constriction is formed by two rigid circular parts with radius 5mm. Minimum
apertures of 0.5 and 1.5mm are experimentally assessed for p0 ranging from 150 up to 1000 Pa.

4. FLOW SEPARATION PREDICTION

4.1. Bernoulli with ad hoc viscosity correction

The ad hoc assumption for flow separation and quasi-one-dimensional flow model outlined in
Section 2.3 is commonly used as a flow description in physical phonation models [7, 22, 25, 41] for
multiple reasons. Simplicity favors understanding and model analysis. Besides, the qualitative and
quantitative predictive capacity of major phonation features is striking in spite of the simplicity.
Furthermore, the relationship between model quantities and in vivo physiological meaningful
quantities is unambiguous. Remark that all the models formulated in Section 2 require the upstream

Figure 3. Schematic representation of the experimental setup: (A) air supply; (B) pressure tank; (C)
upstream pipe; (D,E) rigid mechanical replica; (F,G) pressure taps; and (H) volume flow rate meter.
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pressure p0 as main input quantity. For phonation, p0 corresponds in vivo to the subglottal
pressure. Since in vivo non-invasive direct measurement of subglottal pressure is difficult to achieve,
important in vivo applications as vocal fold pathologies might benefit from an alternative model
formulation, in which the glottal pressure profile is derived from a downstream pressure instead of
the upstream pressure. Such a formulation follows easily from Equation (5) relating p0, pM and
the flow separation constant c analytically. Since the coefficient c determines both the separation
position as well as the maximum pressure drop, it is interesting to assess the influence of a small
variation in c on the estimated pressure p̂m and p̂0 expressed by

p̂m = p0(1−c2)⇒
∣∣∣∣
 p̂mp0

∣∣∣∣=|−2c
c| (23)

p̂0 = pm
1−c2

⇒
∣∣∣∣
 p̂0pm

∣∣∣∣= ∣∣∣∣ 2c
c

(1−c2)2

∣∣∣∣ (24)

with 
c=c−cr denoting the discrepancy between the ad hoc assumed separation coefficient
c=constant and the coefficient corresponding to the actual separation position cr . In phonation
literature c is commonly choosen in the interval [1.1 1.5]. The outcome for c=1.2 and cr ∈[1 2]
is illustrated in Figure 4. The lower limit cr =1 corresponds to separation at the constriction site
whereas increased separation coefficients up to cr =2 can be expected whenever viscous effects
dominate. It is seen that a small 
c=0.1 alters the estimated pressure to 24 and 125% of the
input pressure. Consequently, the resulting pressure distribution and derived forces are severely
influenced. Accounting for p̂m in p̂0 as p̂0= p̂m/1−c2 further increases the discrepancy. Therefore,
although it is shown that the ad hoc separation assumption allows to characterize the flow behavior
with a very low computational cost, more accurate flow models are required for which the position
of flow separation does not impose the pressure drop. The same arguments hold in case of OSA
where accuracy at a reasonable computational cost is required for surgical prediction purposes
[9, 10].

1 1.2 1.4 1.6 1.8 2
0

200

400

600

800

1000

Figure 4. Error estimation related to flow separation c with upstream p0 (dashed) or downstream (full)
pM pressure at minimum constriction as known input variable for ad-hoc assumption c=1.2.
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Figure 5. Analytical (full) and asymptotic (dashed) half angle � corresponding to flow separation derived
for a circular constriction with diameter d=1cm and hM =1mm.

4.2. Jeffery–Hamel self-similar flow

Jeffery–Hamel self-similar flow described in Section 2.4 is qualitatively assessed in terms of the
main geometrical parameters d and hM describing the circular constriction geometry depicted in
Figure 2. In order to apply Jeffery–Hamel solutions, the circular geometry is locally approximated
by its tangent from which a half angle � is deduced. Analytically and asymptoticly obtained half
angles �(Re) corresponding to flow separation are illustrated in Figure 5. The asymptotic prediction
�Re=10.3 is not valid for low Re. Consequently, except for low Re, both predictions coincide.
Next, the parameter set (d,hM ) is varied within the range of interest for phonation and OSA, as
reported in Table I. Resulting separation positions are expressed in terms of the parameter c, so
that separation occurs at hs =chM . Resulting c(d,Re) and c(hM ,Re) are illustrated in Figure 6(a).
The diameter d is increased from 1 to 5 cm and the minimum aperture is set to hM =1mm. In
Figure 6(b) the minimum aperture hM is increased from 0.2 up to 3mm and the diameter is set to
d=1cm. The separation coefficient c is seen to augment with increasing diameter d and decreasing
minimum aperture height hM due to the increasing influence of viscosity. Although qualitative
tendencies are obtained, the velocity behavior expressed in Equation (10), i.e. u≈1/x , needs to
be verified before assessing quantitative comparisons.

4.3. Boundary layer solution and 2D Navier Stokes

Flow separation is predicted from boundary layer solutions and 2D Navier Stokes simulations. The
qualitative variations obtained from Jeffery–Hamel solutions for varying minimum constriction
aperture hM and diameter d are quantified. A circular geometry with diameter d=1cm, for which
the upper half is illustrated in Figure 7, is assessed for hM =0.5 and 1.5mm. Predicted flow
separation positions are illustrated in Figure 8. As a reference also flow separation coefficients
estimated from measured upstream pressures p0 and pM , following Equation (5), are indicated.
In addition the ad hoc assumption c=1.2 is shown. Measurements were made with the circular
constriction mounted in the experimental setup described in Section 3 for hM =0.5 and 1.5mm. The
upstream pressure p0 was varied. Comparing the ad hoc assumption c=1.2 and c=√

1− pM/p0
emphasizes the failure to predict both pressure drop pM/p0 and position of flow separation
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d=1cm

d=5cm

0 50 100
1

1.5

2

2.5
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2.5
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0.2mm

3mm

(a)

(b)

Figure 6. Analytical (full) and asymptotic (dashed) separation position expressed as c=h/hM on
circular geometries for (a) diameter d set to 1 and 5 cm and minimum aperture hM =1mm. Ad hoc
c=1.2 is indicated (straight line). (b) Corresponding separation position for c=h/hM on circular
geometry with diameter d=1cm and increasing minimum aperture hM 0.2, 0.5, 1.0 and 3mm.

Ad hoc is indicated c=1.2 (straight line).

c using a single model parameter. For both apertures, c=√
1− pM/p0≈1.05<1.2, is yielded.

Separation positions predicted from the boundary layer solutions systematically overestimate flow
separation positions compared with values obtained with 2D Navier Stokes simulations. However,
the difference remains within 3% regardless the upstream pressure and minimum aperture hM .
Consequently, both predictions match quantitatively. The predicted c values, associated with the
position of flow separation, increase when the minimum aperture is decreased. This finding confirms
the qualitative finding obtained with Jeffery–Hamel flow. The ad hoc coefficient c=1.2 is seen to
describe well the flow separation position for hM =0.5mm and upstream pressures p0>400Pa. The
value estimated from the measured pressure drop c=√

1− pM/p0 describes well flow separation
positions for hM =1.5mm.

The influence of the length of the constricted area on the position of flow separation is assessed
with boundary layer solutions. The upstream pressure is as before varied from 150 up to 1000 Pa
for hM =0.5 and 1.5mm. The length of the constriction geometry remains 1 cm, but the constricted
portion is extended by locally increasing the radius as shown in Figure 7. The influence on the
flow separation position is illustrated in Figure 9. The predicted c values increase for both assessed
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0 0.005 0.01 0.015
0

0.005

0.01

x [m]

h 
[m

]

Figure 7. Upper half of the geometries: circular geometry d=1cm with hM =0.5mm (full) and
hM =1.5mm (thick full) and geometry with extended constriction length for which the minimum hM

remains at the same positions hM =0.5 (dashed) and 1.5mm (not shown).

0 200 400 600 800 1000
1

1.2

1.4

1.6

1.8

2

Figure 8. Flow separation position along a circular constriction with d=1cm and hM =0.5 and
1.5mm predicted by boundary layer theory (0.5: × and 1.5: +) and 2D Navier Stokes (0.5: � and
1.5: ♦). Ad hoc c=1.2 is indicated (straight line) as well as c matching measured ratios pM/p0

given by Equation (5) (0.5: � and 1.5 �).

minimum apertures hM and in particular for the smallest, hM =0.5mm, since viscous effects
dominate. Quantitatively, c values increase with 4% for hM =1.5 and with 7% for hM =0.5mm.
Increased c values confirm the qualitative finding outlined in Section 4.2.

5. CONCLUSION

Flow and geometrical conditions encountered in the human upper airways during phonation and
obstructive sleep apnea lead to the assumptions of bi-dimensional, quasi-steady and laminar flow.
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1.1

1.2

1.3

1.4

1.5

Figure 9. Flow separation position for hM =0.5 and 1.5mm predicted by boundary layer theory
for a circular geometry d=1cm (0.5: × and 1.5: +) and for an extended constricted region as

shown in Figure 7 (0.5: ◦ and 1.5: ∗).

Flow models with different degree of complexity are assessed in order to model the position
of flow separation along a constriction with varying minimum constriction aperture, constric-
tion length and upstream pressure. Common quasi-one-dimensional flow models with an ad hoc
separation criterion, frequently used in physical phonation modelling, are not suitable in case
accurate predictions of both pressure drop and flow separation position are aimed due to the
dependence of the pressure drop on the ad hoc assumption. Next, the dependence of the flow
separation position on the minimum aperture and constriction length is qualitatively illustrated by
considering Jeffery–Hamel flow. Jeffery–Hamel self-similar solutions, as exact solutions of the
Navier Stokes equations, provide interesting features with respect to simulation validation and
flow stability. Although, quantitative predictions are not assessed since further flow validation is
needed. Moreover, due to the self-similarity, Jeffery–Hamel cannot be applied to all geometries.
Nevertheless, the qualitative findings are confirmed by quantitative flow separation predictions
obtained from boundary layer solutions and numerical simulations of the two-dimensional Navier
Stokes equations. Both decreasing the minimum aperture and increasing the constriction length
augment predicted c values, as a result of the increased importance of viscosity. Boundary layer
solutions as well as simulations of two-dimensional Navier Stokes equations provide accurate
prediction of the flow separation position. Clearly, boundary layer solutions limit computational
cost in case in-vivo applications are aimed. The current systematic study of constriction length
and height needs to be extended to more complex and realistic geometries. More complex flow
models need to be considered, e.g. with respect to the occurrence of turbulence. Next, the ongoing
flow–structure interaction should be modelled.
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