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Flow through the vocal tract is studied through an in vitro rigid replica for different geometrical
configurations and steady flow conditions with bulk Reynolds numbers Re< 15 000. The vocal tract
geometry is approximated by two consecutive obstacles, representing “tongue” and “tooth,” in a
rectangular channel of fixed length. For the upstream tongue obstacle with fixed constriction degree
(81%) the streamwise position is varied and for the downstream obstacle the constriction degree is
varied from 0% up to 96%. Different upstream pressures are considered for each geometrical con-
figuration. Point pressure measurements at three fixed locations along the channel are experimen-
tally assessed. In addition, the volume airflow rate is measured. The pressure distribution is
estimated with a one-dimensional flow model, and the effects of different corrections to a laminar
irrotational flow are assessed. The model outcome is validated against experimental data. Depend-
ing on the geometrical configuration, the best model accuracy is obtained by accounting for viscos-
ity (needed for constriction degrees at the tooth that are small, i.e.,! 58%, or very large, i.e., "
96%), a sudden constriction (large gap between both constrictions), or a bending geometry (narrow
gap between both constrictions). Best overall model errors vary between 4% and 30% for all
assessed geometrical configurations in cases where a tongue obstacle is present.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3631631]
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I. INTRODUCTION

Research on physical modeling of human speech pro-
duction is mainly concentrated on voiced sound production.
In particular, simplified quasi-one-dimensional flow models
are commonly used to describe the glottal flow driving the
auto-oscillation of the vocal folds (e.g., Ishizaka and Flana-
gan, 1972; Lous et al., 1998; Ruty et al., 2007). As a conse-
quence, the validation of quasi-one-dimensional flow models
is extensively studied on simplified rigid mechanical models
of the glottis containing the vocal folds (e.g., Pelorson et al.,
1994; Barney et al., 1999; Cisonni et al., 2008). Simplified
mechanical geometries with a limited number of geometrical
parameters are used to avoid experimental results which can
not be reliably interpreted.

Similarly, a necessary step to describe unvoiced fricative
sound production is to characterize the flow through the vocal
tract downstream the glottis. Aerodynamic and aeroacoustic
principles have been introduced in speech production studies
dealing with fricatives since Fant (1960). This pioneering
work has been further developed by experimental as well as
modeling studies (e.g., Shadle, 1985; Sinder, 1999; Adachi
and Honda, 2003; Howe and McGowan, 2005; Krane, 2005;
Shadle et al., 2008). An extensive and systematic study of
flow through the vocal tract downstream of the glottis for
configurations relevant for unvoiced sound production is

lacking as recently pointed out (Howe and McGowan, 2005;
Bodony, 2005). Therefore, a systematic comparison of meas-
urements on simplified mechanical vocal tract models to
physical flow models is necessary to gain insight in the
observed flow regime. In addition, it is of interest to deter-
mine if the simplified quasi-one-dimensional flow model
approach, commonly applied to glottal flow, can be extended
to model the mean flow behavior in the vocal tract during fri-
cative production.

The underlying mechanism of sibilant fricative sound
production is generally described as noise produced due to the
interaction of a turbulent jet, issued from a constriction some-
where in the vocal tract, with a downstream wall or obstacle.
Consequently, the position and shape of articulators like
tongue and teeth determine the generation and development
of the jet as well as its downstream interaction with a wall or
obstacle as is indeed observed on human speakers (Narayanan
et al., 1995; Runte et al., 2001). It follows that experimental
and simulation studies have been performed in order to
characterize and quantify the influence of “articulators” posi-
tion and shape on the sound produced (Shadle, 1985, 1991;
Ramsay, 2008; Nozaki et al., 2005). Nevertheless, the previ-
ous studies focus on the acoustics of fricative noise production
and not on the flow. In fact, there are few studies that use flow
data to provide a systematic characterization issuing from
configurations relevant to human fricative production, i.e.,
moderate Reynolds Re numbers covering the range
2000<Re< 104 (Stevens, 1998) and low Mach number M
(Howe and McGowan, 2005; Bodony, 2005).
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Recently, single sensor anemometry was used to charac-
terize the spatial velocity distribution issued from an
extended conical diffuser (Re¼ 7350) (Van Hirtum et al.,
2009b). The data validated self-similar flow models of jet
development, which can be applied to model the jet through
the constriction between the tongue and the palatal plane,
although no obstacle was considered. In addition, flow devel-
opment through a rectangular channel with a teeth-shaped
obstacle inserted was studied by comparing simulated and
measured velocity data in the near field downstream of the
teeth edge (Re¼ 4000) (Van Hirtum et al., 2010), although
no jet formation upstream of the obstacle was considered.
Besides the limitation of Van Hirtum et al. (2009b, 2010) to
one Reynolds number, it is evident that no geometry repre-
senting jet formation followed by a downstream obstacle
was considered. Therefore, a systematic study of flow data
for such a geometry typical for sibilant fricative production
is lacking.

A simplified rigid mechanical vocal tract replica, char-
acterized by a few geometrical parameters, is described in
Shadle (1985, 1991). In the current study, a rectangular rigid
mechanical replica, inspired by the one presented in Shadle
(1985, 1991), is proposed in order to mimic the vocal tract
geometry combining a constriction followed by a down-
stream obstacle. The replica consists of a constricted portion
between the tongue and the “palatal plane” upstream of an
obstacle representing a tooth for which the constriction can
be varied. Its dimensions are taken to be relevant to the
human physiology of an “average” male adult vocal tract
(Daniloff et al., 1980; Hirano et al., 1987; Narayanan et al.,
1995; Runte et al., 2001; Stevens, 1998; Rudolph et al.,
1998; Magne et al., 2003). The gap between the constricted
vocal tract portion and the obstacle as well as the constric-
tion degree at the obstacle are systematically varied. In addi-
tion, the flow conditions are varied so that the relevant range
of Reynolds numbers is experimentally assessed. The flow is
characterized by measuring the volume flow rate and per-
forming point pressure measurements at different positions
along the replica.

These data are compared to the results of one-
dimensional flow model approach commonly used to
describe the mean flow in physical models of phonation in
order to validate the degree to which the models are suitable
to describe the flow through the entire upper airway from the
larynx up to the lips. Since it is obvious that the flow is too
complex to be represented by a laminar flow model, assumed
in Bernoulli’s equation, several ad hoc corrections are
assessed to describe the influence of vorticity and turbulence
on the mean flow. The flow model outcome is particularly
validated for (1) variation of the distance between jet and ob-
stacle as well as (2) the constriction degree at the obstacle.

II. ONE-DIMENSIONAL FLOW MODELS

Considering a rectangular channel with two constric-
tions as schematically shown in Fig. 1, the total pressure dif-
ference DPtot is given as

DPtot ¼ DP1 þ DP2 þ DP3 þ DP4 þ DP5; (1)

with

DP1 ¼ P x ¼ 0ð Þ ' P x ¼ i1ð Þ;
DP2 ¼ P x ¼ iið Þ ' P x ¼ si1ð Þ;
DP3 ¼ P x ¼ si1ð Þ ' P x ¼ i2ð Þ;
DP4 ¼ P x ¼ i2ð Þ ' P x ¼ si2ð Þ;
DP5 ¼ P x ¼ si2ð Þ ' P x ¼ i3ð Þ:

It is assumed that no pressure loss occurs in the uniform inlet
portion so that P0¼P(x¼ 0)¼P(x¼ i1) and DP1¼ 0. The
pressure losses DPi in the remaining portions with varying
area Ai,si, with subscript i denoting the upstream position and
subscript si the downstream position, can be modeled by
application of a combination of terms from which the pres-
sure distribution p(x) follows immediately (Blevins, 1992;
Kundu, 1990; White, 1991; Cisonni et al., 2008; Van Hirtum
et al., 2009a). In the following the different terms are
explained and equations are given. Assuming a simplified
one-dimensional quasi-stationary incompressible and irrota-
tional flow described by the stationary Bernoulli’s equation
given in (2) and denoted DPber

i ,

DPber
i ¼ Q2 q

2

1

A2
si

' 1

A2
i

! "
;

¼ Q2 q
2

1

A2
i

A2
i

A2
si

' 1

! "
;

(2)

with volume flux Q and mean air density q.
Several corrections to (2) can be considered due to flow

separation, viscosity, or downstream pressure recovery. Since
steady flow conditions are considered no correction for
unsteady flow is necessary. For the geometry shown in Fig. 1,
flow separation is assumed to occur at locations xsi1 and xsi2

regardless upstream pressure P0 or volume flow rate Q so that
the position of flow separation is fixed and no correction for
position change is needed. Viscous losses, on the contrary, are
known to be important in case of low Reynolds numbers, i.e.,
low velocity or small height h(x). Therefore, the Bernoulli
equation is corrected for viscosity by adding a viscous pres-
sure loss term (3) denoted DPvisc

i derived from a fully devel-
oped viscous Poiseuille profile as outlined in Appendix A,

DPvisc
i ¼ Q

'12l
w

ðxsi

xi

dx

hðxÞ3
; (3)

FIG. 1. Schematic overview of the geometry: rectangular channel with fixed
width w characterized by height variation h(x). The unconstricted channel
height is denoted h0 and two constrictions are inserted spanning the intervals
[i1 si1] and [i2 si2]. The x-axis indicates the main flow direction.
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with dynamic viscosity coefficient l.
So far, pressure recovery by flow reattachment upstream

the flow separation point is neglected. In Ishizaka and Flana-
gan (1972) the pressure recovery is estimated by evaluating
the quasi steady momentum equation. The resulting expres-
sion (4) describes the pressure recovery as a portion of the
Bernoulli loss term (2):

DPexp
i ¼ Q2 q

2

1

A2
i

A2
i

A2
si

' 1

! "
þ 1' Ai

Asi

! "$ %

¼ Q2 q
2

'2

AiAsi
1' Ai

Asi

! "$ %
: (4)

The magnitude of the recovery depends on the area ratio Ai/
Asi at the position of flow separation Ai and the expanded
area Asi downstream the constriction. It is clear that (4)
assumes a uniform flow profile over area Asi so that the pres-
sure recovery becomes proportional to 1 – (Ai/Asi).

2 On the
other hand zero pressure recovery is expected in case a nar-
row jet flow is assumed to be maintained, so that Asi¼Ai

and the loss term becomes zero since (1 – Ai/Asi)¼ 0, corre-
sponding to not taking Eq. (4) into account.

Alternatively to the extreme cases of no recovery or uni-
form flow, an intermediate value for the pressure recovery is
expected in case of an expanding jet geometry to which (2)
can be applied. A geometrical correction for jet expansion is
easily obtained by applying an expansion angle hjet to the
uniform narrow jet as

Ajet ¼ ½hi þ CjettanðhjetÞðxsi ' xiÞ)w; (5)

with expansion angle hjet* 4.2+ and model constant Cjet set
to 1 or 2 accounting for one-side or two-side geometrical
expansion of a two-dimensional jet (Kundu, 1990; White,
1991). The constricted portion indicated [i2, si2] in Fig. 1 can
be seen as a thin square-edged contraction for which separa-
tion might occur depending on the Reynolds number at the
leading edge, x¼ i2, instead of the trailing edge, x¼ si2. In
case separation occurs, the flow through the constriction is
accelerated and a pressure loss occurs as reported in (7)
where Ccon can be seen as an discharge coefficient whose
value can be estimated from geometrical considerations (6),
(8) or as an ad hoc orifice coefficient (7) Blevins (1992).

DPcon
i ¼ Q2 q

2

1

A2
si

1'
A2

si

A2
i

! "
þ 1

2
1' Asi

Ai

! "$ %

¼ Q2 q
2

1

A2
si

1' A2
si

A2
i

! "
1þ 1

2
1þ Asi

Ai
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 !

; (6)

¼ Q2 q
2

1

A2
si

1'
A2

si

A2
i

! "
1

C2
con

; Ccon < 1; (7)

Ccon ¼ 1þ 1

2
1þ Asi

Ai

! "'1
" #'1=2

: (8)

Expressions (2)–(7) assume the main flow direction to be
along the x axis. However, when the distance between the

downstream and upstream constriction is reduced, the chan-
nel geometry seen by the flow presents two 90+ turns, one at
the entrance and one at the exit of the gap between the two
obstacles. Therefore, the main flow direction following the
x-direction along both constrictions is likely to be perpendic-
ular to the x-direction inside the gap between both constric-
tions. In this case, the geometry can be seen as a sharp 90+

bend for which the pressure loss can be described with in
which the coefficient Cben is either estimated from the vol-
ume flow rate and the geometry or chosen as an ad hoc bend-
ing discharge coefficient Blevins (1992).

DPben
i ¼ Q2 q

2

1:1

A2
si

2, 105

ReD

! "0:2
" #

; (9)

¼ Q2 q
2

Cben

A2
si

$ %
;ReD< 2, 105 ! Cben > 1:1; (10)

Cben ¼ 1:1
2, 105

ReD

! "0:2

; (11)

with ReD denoting the Reynolds number based on the corre-
sponding hydraulic diameter, which for a rectangular area
with width w, A¼wh, is defined as ReD ¼ 2qQð Þ=
l wþ hð Þ½ ). For the range of ReD under consideration,

0<ReD< 19 000, the coefficient Cben is 1.1<Cben with a
typical value yielding Cben - 2.2.

Alternatively, a change in flow direction in the narrowed
portion between both constrictions can be simply accounted
for by exchanging height and length in this section of the
channel and applying the previous mentioned terms, (2)–(7),
in order to determine the pressure distribution p(x) along the
main flow direction.

Except for the viscous loss term (3), the pressure differ-
ences DPi in expressions (2)–(10), for known volume airflow
velocity, are of the form DPi¼ f(Ai, Asi) which, in case of a
channel with fixed width w, reduces further to DPi¼ f(hi,hsi).
The relative importance of resulting pressure differences DPi

normalized with respect to a positive real power b> 0 of vol-
ume flow rate Q,

DPi=Qb ¼ f ðhi; hsÞ and b 2 Rþ0 ; (12)

with Rþ0 ¼ x 2 R x > 0jf g is illustrated in Fig. 2 for b¼ 2
and Cben¼ 2.2. Two different upstream heights hi are illus-
trated, i.e., hi¼ 16 and hi¼ 3 mm. The values of hi and hsi

are chosen in the range of magnitudes relevant for the cur-
rent study. Illustrated pressure losses are normalized with
respect to the bending term (10) for hsi¼ 0.6 mm, since
DPben

i hsi ¼ 0:6ð Þ ¼ c1 with c1 a constant value independent
of hi. Consequently the applied normalization is independent
of hi which favors interpretation and comparison between
both assessed hi values. Figure 2(a) and 2(b) illustrate the
resulting pressure losses in case hsi is varied in the intervals
[0.6 3] and [3 16] mm, respectively. For a given volume air-
flow rate and hsi in the range [0.6 3] mm, i.e., hsi= hi, the
relative pressure losses obtained from (2), (4), (7), and (10)
are highly dependent on hsi as can be seen from Fig. 2(a).
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The relative difference between the terms for a given hsi is
seen to decrease from 55% to 5% as hsi increases from 0.6 to
3mm. As expected, application of (4), (7), or (10) increases
the pressure loss compared to the Bernoulli term expressed
in (2). In order to consider the different contributions to the
pressure losses, all terms are presented in Fig. 2(a) regardless
their physical relevance. In particular, the expansion term
(4) results in an intermediate pressure loss compared to the
other loss terms although of course no geometrical expan-
sion is present since hi> hsi for hi 2 3 16½ ) mm. The relative
influence of hi for hi> hsi is seen to be less than 10%, except
for the unphysical expansion term for which the difference is
less than 20%, for the whole range [0.6 3] mm and is
decreasing as the ratio hsi/hi increases. For hi¼ 3 mm, the ra-
tio hsi/hi! 1 as hsi! 3, and consequently, all terms, except
the Bending term, become 0 in this limit. For hi¼ 16 mm, all
terms remain> 0.

Pressure differences for hsi 2 [3 16] mm are illustrated
in Fig. 2(b). As in Fig. 2(a), physically meaningless terms
are shown in order to illustrate the model behavior com-
pletely, i.e., the expansion term (4) for hi¼ 16 mm and the
contraction term (7) for hi¼ 3 mm. Pressure values are nor-
malized with respect to the bending term (10) obtained for
hsi¼ 3 mm, i.e., DPben

i hsi ¼ 3ð Þ ¼ c2 with c2 a constant value
independent of hi. For hi¼ 16 mm the condition hsi/hi< 1 is
still valid and therefore the observations described on Fig.
2(a) can be extended to the relative pressure losses illustrated
in Fig. 2(b). The relative difference decreases as hsi

approaches hi¼ 16 mm, in which case all terms except the

Bending term (10) go to 0. For hi¼ 3 mm, different observa-
tions can be made since hsi/hi> 1 for hsi 2 3 16½ ) mm. For
hsi/hi> 1 Bernoulli (2) and Expansion (4) result in pressure
recovery with respect to the upstream pressure, i.e., DP< 0.
Furthermore, it is easily derived from (4) that a maximum
pressure recovery occurs for hsi¼ 2hi. This is illustrated in
Fig. 2(a) where a maximum for the expansion term is indeed
observed at hsi¼ 6 mm for hi¼ 3 mm. From (3) and (5) it is
seen that besides a dependence on h(x), the pressure differ-
ence induced by (3) as well as the importance of the geomet-
rical jet expansion (5) increases as the streamwise extent
increases.

III. RIGID IN VITRO REPLICA AND EXPERIMENTAL
SETUP

The rigid in vitro replica consists of two constrictions,
C1 and C2, inserted in a uniform rectangular channel as sche-
matically depicted in Fig. 1 and detailed in Fig. 3. The
unconstricted channel has length L0¼ 180 mm, height
h0¼ 16 mm, width w¼ 21 mm, and aspect ratio w/h0¼ 1.3.
The shape of both constrictions C1 and C2 is fixed. Their
lengths in the x-direction yield l1¼ 30 mm for C1 and l2¼ 3
mm for C2. The aperture h1 is fixed to 3 mm, which corre-
sponds to a constriction degree of 81%. The distance of the
trailing edge of C2 to the channel exit, L2, is fixed to 6 mm.
The distance of the trailing edge of C1 with respect to the
channel exit, L1, can be varied as well as aperture height h2

of constriction C2. Therefore, besides the inlet height h0, the

FIG. 2. (Color online) Relative im-
portance of the pressure difference
DP/Q2¼ f(hi,hsi) with f defined from
(2) (,Bernoulli), (4) (* expan-
sion), (7) (^ contraction) and (10)
(þ bending), respectively, for
upstream heights hi¼ 16 mm (no
line) and hi¼ 3 mm (full line): a) hsi

2 [0.6 3] mm normalized with
DPben(hsi¼ 0.6)¼ c1 and b) hsi 2 [3
16] mm normalized with
DPben(hsi¼ 3)¼ c2.

FIG. 3. Two dimensional schema of rigid in vitro replica: rectangular channel with fixed unconstricted height h0¼ 16 mm, uniform width w¼ 21 mm and total
length L0¼ 180 mm containing two constrictions C1 and C2. The main streamwise direction corresponds to the x axis. The constricted portions C1 and C2 has
streamwise lengths l1¼ 30 mm and l2¼ 3 mm, respectively. The minimum aperture height of C1 is indicated h1 and of C2 is denoted h2. The distance between
the channel exit and the trailing edge of C1 and C2 is denoted L1 and L2, respectively. The distance between the trailing edge of C1 and the leading edge of C2

is denoted L. The geometrical parameters yield L2¼ 6 mm and h1¼ 3 mm. The geometrical parameters L1 and h2 can be varied. Three pressure taps are present
at downstream positions p0¼ 30 mm, p1¼ 160 mm, and p2¼ 173 mm.
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pressure distribution is determined by the set of geometrical
parameters {h1, L1, h2} among which L1 and h2 can be var-
ied. In order to validate the pressure drop, three pressure taps
are assessed at positions p0¼ 30 mm, p1¼ 160 mm, and
p2¼ 173 mm from the channel inlet. The position of the
pressure taps is fixed to prevent leakage.

All combinations of {L1,h2}, for which the values are
summarized in Table I, are experimentally assessed. The
cases h2¼ 16 mm and L1¼ 1 mm correspond to “no-tooth”
configurations. Since the position of the pressure tap p1 is
fixed, p1 is either situated in the gap between C1 and C2 for
large L1 or along C1 in case L1 is small. The successive dif-
ferent downstream positions of C1, given in Table I, respec-
tively, correspond to a trailing edge position situated either
at 13 and 5 mm downstream of p1 or at 1, 6, 8, or 19 mm
upstream of p1. An overview of the different trailing edge
positions is depicted in Fig. 4. A comparison between exper-
imental replica values and typical values observed on in vivo
speakers is given in Table II.

Next, the in vitro replica is mounted into a suitable ex-
perimental setup. Air is supplied by a compressor (Copco
GA7). The compressor is connected by a tube with diameter
1 cm to a pressure regulator (Norgren type 11-818-987) and a
downstream manual valve in order to provide steady flow. A
tube with diameter 1 cm connects the manual valve to a
massflowmeter (TSI 4001), which is connected further down-
stream to a pressure tank of 0.073 m.3 The rectangular pres-
sure tank of dimensions 360, 500, 400 mm (x, y, z) is

tapered with acoustical foam (SE50AL-ML). The in vitro
replica described before is directly mounted to the pressure
tank. The upstream pressure P0, the intermediate pressure P1,
11 mm upstream of C2, and pressure P2, at constriction C2,
are measured with pressure transducers (Kulite XCS-093) at
the pressure taps p0, p1, and p2 shown in Figs. 3 and 4. The
volume flow rate Q is measured using the massflowmeter
(TSI 4001) upstream of the pressure tank.

IV. DATA AND OPTIMAL DATA APPROXIMATION

Measured point pressures and volume flow rates for
imposed flow and geometrical conditions are discussed in
Sec. IV A. In Sec. IV B, measured data are analyzed by
means of an ad hoc estimation of the coefficients for a para-
metrical function derived from (2). A data-based optimiza-
tion approach enables us to determine if such a simple
mathematical expression is able to explain the data. The
resulting error indicates a minimum value and is therefore a
reference for the model validation presented in Sec. V. In
particular, the influence of the geometrical parameters on the
accuracy of predictions with the parametrical function is
assessed.

A. Experimental volume flow and pressure data

The geometrical configurations depicted in Fig. 3 and
Fig. 4 are assessed for upstream pressures P0! 4000 Pa. The
associated bulk Reynolds numbers, defined as Re¼Q/(vw),
are 0<Re< 15 000. Figure 5 shows the measured values of

TABLE I. Summary of 37 experimentally assessed geometrical conditions

illustrated in Fig. 4. All used combinations of (L1, h2) are accounted for by
combining 6 values listed for L1 in (a) with 6 aperture values h2 at the obsta-
cle given in (b). Resulting values for the gap between both constrictions

L¼L1 – 9 mm and associated constriction degrees [%] due to L, 1 – L/h0,
and the obstacle aperture h2, 1 – h2/h0, are indicated. Note that the constric-

tion degree at h1 due to C1 is fixed to 81% whenever C1 is present. Absence
of C1 is denoted ‘–’ in subtable (a). In addition, to the 36 (L1, h2)-combina-
tions of (a) and (b), a no-front cavity case without obstacle (L1¼ 1mm,

h2¼ /) is considered.

(a) L1 and derived variables

L1 [mm] - (no C1) 33 25 19 14 12

L [mm] - (no C1) 24 16 10 5 3

1 - L/h0 [%] 0 (no C1) 0 0 38 69 81

(b) h2 and derived variables

h2 [mm] 16 (no C2) 6.8 5.5 2.6 1.5 0.6

1 - h2/h0 [%] 0 (no C2) 58 66 84 91 96

FIG. 4. Illustration of assessed geometrical config-
urations for different values of L1 [mm] (dashed
vertical lines) and h2 [mm] (dashed horizontal
lines) and the position of the pressure taps
(p0,p1,p2).

TABLE II. Comparison of typical values related to the vocal tract during

fricative production and the replica (Daniloff et al., 1980; Hirano et al.,
1987; Narayanan et al., 1995; Runte et al., 2001; Stevens, 1998; Rudolph et
al., 1998; Magne et al., 2003). The assessed values for the experimentally

varied geometrical parameters, h2 and L, are further detailed in Table I.

Quantity Symbol On human On replica

Vocal tract height h0 10–20 mm 16 mm

Vocal tract width w 15–25 mm 21 mm

Vocal tract length L0 150–190 mm 180 mm

Minimum aperture at the tongue h1 1–4 mm 3 mm

Length of teeth l2 1–2 mm 3 mm

Distance between teeth and lips L2 1.7, l2 6 mm

Minimum aperture at the teeth h2 1–2 mm 0.6–16 mm

Distance between tongue
constriction and teeth

L 5–15 mm 3–24 mm

Reynolds number Re 2000<Re< 104 Re< 15000
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Re and downstream pressures (P1,P2) as a function of P0 and
the geometrical parameters (L1, h2).

Figure 5(a) illustrates the measured relationship Re(P0).
For h2¼ 0.6 mm corresponding to a constriction degree of
96% the relationship Re(P0) is seen to be nearly independent
of L1 since the relative difference is less than 5% for all
assessed volume airflows. For h2¼ 1.5 mm the presence of
both constrictions becomes notable since increasing L1 from
12 to 33 mm slightly decreases P0 with 8% and further to

12% in absence of C1. This dependence on L1 is even more
important as the aperture h2 is further increased up to 6.8
mm. The relative pressure decrease with increasing L1 from
12 to 33 mm yields 25%, 44%, and 51% for h2¼ 2.6,
h2¼ 5.5, and h2¼ 6.8 mm and decreases further to 38%,
78%, and 87% in absence of C1. Consequently, the pressure
drop increases when the gap between both constrictions is
narrowed indicating that pressure recovery is favored in case
of a wide gap between both constrictions.

FIG. 5. (Color online) Overview of experimental
results of Re(P0), P1/P0(P0) and P2/P0(P0) for all
assessed geometrical (L01,h2) and flow (P0) configu-
rations: absence of the upstream obstacle C1 is indi-
cated as L1¼ none (*), L1¼ 33 (3), L1¼ 25 (^),
L1¼ 19 (þ), L1¼ 14 (*), L1¼ 12 ($), L1¼ 1mm
(D), h2¼ 16 (blue), h2¼ 6.8 (red), h2¼ 2.6 (black),
h2¼ 1.5 (magenta), and h2¼ 0.6mm (cyan). Data
for h2¼ 5.5 are not shown, but exhibit the same ten-
dencies as the data for h2¼ 6.8.
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In absence of C2, i.e., h2¼ h0¼ 16 mm, pressure recov-
ery is mainly determined by constriction degree of 81% due
to the fixed aperture of h1¼ 3 mm. Consequently, varying L1

from 33 to 1 mm results in a fairly constant pressure drop P0

regardless the volume airflow rate. The slight pressure
increase, less than 4%, for increasing L1 is the result of a
small pressure recovery in the channel. Figure 5(b) illustrates
the pressure measured at p1 normalized by the upstream
pressure, P1/P0. As illustrated in Fig. 4, the relative position
of the pressure tap p1 with respect to the trailing edge of con-
striction C1 depends on L1. For L1¼ 33 and 25 mm the pres-
sure is measured in the gap between both constrictions at 15
and 7 mm, respectively, downstream the trailing edge. For
L1¼ 19 mm the pressure is measured 1 mm upstream of the
trailing edge, whereas for L1¼ 14 and 12 mm the pressure
tap corresponds to 4 and 6 mm upstream of the trailing edge.
From Fig. 5(b) it is seen that in absence of C1, the pressure
ratio P1/P0 collapses to a single curve, which is independent
of both h2 and the volume airflow velocity Q. Nevertheless,
the pressure loss increases with input pressure up to 30%
due to friction since the friction factor is Reynolds number
dependent and due to the development of entry flow in the
uniform inlet portion of the channel (Van Dyke, 1970; Wil-
son, 1971; Kapila et al., 1973). In addition, since the aspect
ratio h0/w¼ 1.3 is significantly smaller than 4, three-
dimensional flow development is likely to occur (White,
1991; Schlichting and Gersten, 2000). Note that the one-
dimensional models given in Sec. II are unable to account
for such entry flow effects since all terms become 0, includ-
ing the viscosity term (3), considering the range of Reynolds
numbers under study. Changing the geometry at the entry of
the channel is likely to reduce this pressure loss. Neverthe-
less, since the loss is independent of h2, it is not an important
issue for the present study.

Inserting constriction C1 in absence of constriction C2,
i.e., h2¼ h0¼ 16 mm, increases the pressure drop compared
to the unconstricted channel. For L1¼ 1 to L1¼ 33 mm the
pressure tap p1 is situated consecutively along the converg-
ing portion of C1, at the minimum constriction and finally
downstream C1, so that the associated pressure drop is seen
to increase from ’40% up to ’100%, i.e., P1/P0 - 0. The
pressure drop, P1/P0, measured in presence of both constric-
tions C1 and C2 is intermediate to the previous configura-
tions: a lower limit is reached in absence of C1 and an upper
limit in absence of C2. As for Re(P0) shown in Fig. 5(a), the
influence of L1 on pressure P1 is most noticeable for large
h2> h1¼ 3 mm, i.e., 6.8 and 5.5 mm, for which the pressure
loss is seen to decrease with 12% or more as the gap L1

becomes wider. In addition, the pressure loss P1/P0 measured
for h2> h1¼ 3 mm is more pronounced than for smaller h2,
i.e., h2! h1¼ 3 mm, for which the pressure loss P1/P0" 0.5.
Consequently, the relative pressure drop P1/P0 reduces as h2

decreases since the pressure drop across C2 is increasing.
From the previous discussion of measured P1/P0 values

and from the model terms presented in Sec. II, accounting
for pressure recovery in the gap between both constrictions
is expected to be important for h2 in the range h0> h2> h1

and much less for h2< h1 when regarding the limited influ-
ence of L1 for h2< h1. As a consequence, the geometrical

correction, i.e., interchanging physical height and gap width
in the model geometry, in order to describe the flow direc-
tion is expected to be relevant for h2< h1 and much less for
h0> h2> h1.

Figure 5(c) reports measured pressure losses P2/P0

observed at pressure tap p2. The pressure drop for C2 is most
important for small apertures h2 resulting in negative pres-
sures for h2! 1.5 mm with an order of magnitude about 10%
of P0. Nevertheless, the pressure drop is more pronounced
for h2¼ 1.5 mm than for h2¼ 0.6 mm. This might be due to
(1) viscosity as seen from (3), (2) the strong asymmetry
resulting in a downstream shift of the minimum pressure
(Lagrée et al., 2007), or (3) a small recirculation zone at the
position p2. Varying L1 is seen to influence P2/P0 in particu-
lar for small apertures h2! 1.5 mm for which the presence
of C1 is seen to decrease the pressure drop for the assessed
flow conditions.

B. Optimal data approximation

In this section, the aim is to verify the extent to which
the mathematical expression relative to the physical model
described in (2) explains the experimental observations.
Therefore, the mathematical expression (2) is approximated
under the assumptions Asi. Ai and DP¼P0,E as the follow-
ing parametrical function:

P0;E½zkðjÞ) ¼
Xn

k¼1

akzkðjÞak ak ! 0; ak " 0; (13)

with parameters ak and ak to be estimated by minimizing the
mean square error (see Appendix B). For a fixed value of
volume flow rate Q, variables zk(j) are defined from the jth
measured values of geometrical experimental parameters as:
z1(j)¼ h2(j), z2(j)¼ h1(j) and z3(j)¼ L(j). The number of
terms n included in the summation varies from 1 to 3 as
function of the number of geometrical experimental parame-
ters taken into account. As one can see, for each individual
geometrical variable, expression akzkðjÞak is similar to model
(2) under the assumptions Asi. Ai and DP¼P0,E.

From the estimated parameter set âk; âkf g1!k!n
¼ f ½ P0 jð Þ; zk jð Þf g1!j!N ), with P0(j) the jth measured pressure
and N the number of measurements, provided by minimiza-
tion of the mean square error (Appendix B), an estimation Q̂
of the measured volume flow rate Q is obtained as

Q̂ ¼ w
2â1

q

! "'1=â1

: (14)

The relative errors of the estimated volume airflow rate Q̂,
expressed as 100|(Q̂/Q) – 1|, are illustrated in Fig. 6 for n set
to 1, 2, and 3. Accounting for geometrical variable h1 in
addition to h2 decreases the error percentage below 100%
[Fig. 6(b)]. The error percentage is seen to reduce further by
about 40% [Fig. 6(c)] when including L (L¼L1 – 9 mm) as
a geometrical variable. Therefore, accounting for the 3 geo-
metrical variables (h2,h1,L) enables to get a satisfactory esti-
mation of the volume airflow rate Q by (14).
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Since the simple mathematical expression (13) is
derived on a simple model structure presented in Sec. II, it is
expected that discussed models are able to explain the meas-
ured data. In addition, this optimization approach provides a
minimum mean square error and is therefore a reference for
the error range that results from applying the physical model
terms described in Sec. II. The differences between esti-
mated parameters âk and âk and the corresponding values
identified from Bernoulli term (2) as

ak ¼ '2; ak ¼
Q2q
2w2

1 ! k ! n; (15)

reflect the need to take into account pressure losses or recov-
ery due to, e.g., viscosity, jet formation or reattachment,
which are not dealt with in Bernoulli term (2). Including
additional pressure losses or recovery terms as expressed in
(3)–(10) is validated in Sec. V.

V. VALIDATION OF ONE-DIMENSIONAL FLOW
MODELS

The one-dimensional flow models introduced in Sec. II
are validated on the measured data. It is sought to determine
the model accuracy in terms of the geometrical parameters
(L1,h2). Therefore, the pressure distribution is estimated
from models taking into account different terms, (2)–(10), as
discussed in Sec. II. Resulting models q and their principal
features are summarized in Table III. The assessed geometry
and the total pressure difference corresponding to the meas-
ured upstream pressure, i.e., assuming DP¼P0, are model
input parameters from which the volume airflow velocity
and pressure distribution along the in vitro replica geometry,
parameterized by (L1, h2), are estimated.

Model estimations of the volume airflow velocity and of
the pressures at the positions of the pressure taps, i.e., P̂1; P̂2

and Q̂, can be quantitatively compared to experimentally
observed values for each set of input parameters (P0,L1,h2)
in order to determine the model accuracy. Consequently, the
accuracy of the model estimations for P̂1; P̂2,and Q̂ is sought
as function of (P0,L1,h2) for each model q. Relative error
functions f qð Þ

1 P̂1;P0; L1; h2

& '
; f qð Þ

1 P̂2;P0; L1; h2

& '
, and

f qð Þ
2 Q̂;P0; L1; h2

( )
are obtained for each model, denoted by

superscript q, as

fðqÞ1 ðP̂m;P0; L1; h2Þ ¼
P̂m ' Pm

** **
P0

;with m 2 f1; 2g; (16)

fðqÞ2 ðQ̂;P0; L1; h2Þ ¼
Q̂m ' Q
** **

Q
; (17)

where as before P0, Pm, and Q indicate the measured values.
An error function !f qð Þ

k for all N0(L1, h2) assessed P0-values is
defined as

!fðqÞk ð/; L1; h2Þ ¼
1

N0

XN0

r¼1

fðqÞk ð/;P0r; L1; h2Þ
h i

; (18)FIG. 6. (Color online) Relative error [%] of the estimated volume airflow
rate Q̂ as function of L1 for (a) n¼ 1 with z1¼ h2, (b) n¼ 2 with z1¼ h2 and
z2¼ h1, and (c) n¼ 3 with z1¼ h2, z2¼ h1 and z3¼L. L1¼ none indicates
absence of the upstream obstacle C1.

TABLE III. Overview models formulated with terms (2) to (10). For each

model q, the terms taken into account are indicated by,.

Model terms of section II

q (2) (3) (4) (6) (9) terms

Ber , Bernoulli

Visc , , viscosity

Exp , expansion

Con , contraction

Ben , bending
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for which the summation index r in P0r sums over all N0

assessed P0 values for each geometrical configuration (L1,h2)
whereas f qð Þ

k as well as the variable / are defined by (16) for
k¼ 1 (/ ¼Pm) and (17) for k¼ 2 (/ ¼Q). From (18) the over-
all best mean model error !f qð Þ L1; h2ð Þ with respect to all
assessed models q is then straightforwardly quantified as the
model q̂ minimizing the cost function J(q) as expressed in
(19) and (20):

Jðq; L1; h2Þ ¼
1

3
ð!fðqÞ1 ðP̂1; L1; h2Þ þ !fðqÞ1 ðP̂2; L1; h2Þ

þ!fðqÞ2 ðQ̂1; L1; h2Þ;
(19)

q̂ðL1; h2Þ ¼ arg min
q

Jðq; L1; h2Þ: (20)

The overall best mean model errors J q̂; L1; h2ð Þ are plotted in
Fig. 7. Figure 8 depicts the corresponding averaged errors
!f q̂ð Þ

k /; L1; h2ð Þ (18) for P̂1; P̂2, and Q̂. In addition to the error
values (18), the error bars in Fig. 8 illustrate the sensitivity
of the model accuracy for variations of the upstream pressure
P0. In general, the error sensitivity increases as the error val-
ues !f q̂ð Þ

k /; L1; h2ð Þ increases. The overall best mean model
error yields J q̂; L1; h2ð Þ! 30% for all (L1, h2) except in ab-
sence of C1, denoted L1¼ none. In absence of C1, the errors
for h2> 1.5 are significantly larger than in presence of C1, so
that the upper limit for the overall model accuracy increases
to J q̂; L1; h2ð Þ! 50%. From Fig. 8 it is observed that in pres-
ence of C1 large overall errors J q̂; L1; h2ð Þ; e:g:; h2 ¼ 5:5
compared to h2¼ 1.5 mm in Fig. 7, are due to large errors of
!f q̂ð Þ

1 P̂2; L1; h2

& '
, and/or !f q̂ð Þ

2 q̂; L1; h2ð Þ. In absence of C1, the
error !f q̂ð Þ

1 P̂1; L1; h2

& '
is seen to increase as well explaining

the increased overall best mean error upper limit of
J q̂; L1; h2ð Þ! 50% instead of J q̂; L1; h2ð Þ! 30%.

The models resulting in the overall best mean model
error J q̂; L1; h2ð Þ(19), illustrated in Fig. 7, are summarized in
Table IV. From Table IV it is seen that for h2¼ 16 mm as
well as h2¼ 0.6 mm accounting for viscous effects, i.e.,
q̂¼Visc, results in minimal errors J q̂; L1; h2ð Þ regardless the
value of L1. For intermediate values, 0.6< h2! 16, the over-
all best mean model errors J q̂; L1; h2ð Þ are obtained for mod-
els q̂¼Con or q̂¼Ben depending on (L1, h2). It is observed
that inserting L1 upstream from h2 and moving it further
downstream, i.e., decreasing L1, causes a model shift from
q̂¼Con to q̂¼Ben. So, in case of a large gap L1 between
both constrictions C1 and C2, the narrowed passage at C2 can
be modeled as a sudden constriction whereas for smaller
L1 the narrowed passage C2 can be approximated as a
bend in the geometry. The transition between both model
approaches, i.e., constriction ! bending, is seen to depend
on the value of the aperture h2. From Table IV it is seen that
in presence of L1 both small (h2! 1.5) and large (6.8! h2)

FIG. 7. (Color online) Overall best mean model error J q̂; L1; h2ð Þ(19) of the
models q̂ L1; h2ð Þ summarized in Table IV versus h2 as function of L1. Ab-
sence of the upstream obstacle C1 is denoted L1¼ none.

FIG. 8. (Color online) Model errors !f q̂ð Þ
k /; L1; h2ð Þ (18) for P̂1; P̂2 and Q̂ for

the models q̂ L1; h2ð Þ corresponding to J q̂;L1; h2ð Þ presented in Fig. 7 and
summarized in Table IV versus h2 as function of all assessed L1: (a)
!f q̂ð Þ

1 P̂1; L1; h2

& '
; ðbÞ!f q̂ð Þ

1 P̂2;L1; h2

& '
; andðcÞ!f q̂ð Þ

2 q̂; L1; h2ð Þ. Absence of the
upstream obstacle C1 is denoted L1¼ none.
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h2 values favors q̂¼Ben. For intermediate h2 values
(1.5< h2< 6.8) decreasing h2 extend the range of q̂¼Con in
terms of decreasing L1. Finally, we note that altering the ge-
ometry, e.g., assuming jet expansion (5), does not improve
the model accuracy derived as J q̂; L1; h2ð Þ.

VI. CONCLUSION

A rigid in vitro replica is proposed in order to study air-
flow through the human vocal tract during sibilant fricative
production. Two geometrical parameters are studied experi-
mentally: the position of an upstream tongue shaped con-
striction in the main flow direction (L1) and the constriction
degree of a tooth shaped downstream obstacle (h2). The
shape of both obstacles is extremely simplified in order to
limit the number of geometrical and flow parameters to be
taken into account. Obviously, the proposed rigid replica is a
severe simplification of real life physiology and several
improvements can be proposed concerning (1) the shape of
tongue, tooth, or/and tract and (2) extending the number of
geometrical parameters.

Point pressure was measured at several streamwise loca-
tions and appeared to vary significantly over the range of
imposed L1 and h2. In addition, varying L1 while maintaining
h2 fixed is seen to influence the pressure at the tooth constric-
tion. Consequently, besides h2 (transverse tooth aperture), L1

(streamwise tongue position) influences the resulting airflow.
This is confirmed by fitting the measured pressure drop as
function of imposed geometrical parameters since the accu-
racy of the volume flow rate estimation increases by 40%
when the geometrical parameter L1 is taken into account.

Measured pressures and volume airflow rates are com-
pared to the outcome of one-dimensional flow models
assuming a laminar incompressible irrotational and one-
dimensional flow governed by Bernoulli’s equation to which
corrections are applied for viscosity, note that the viscosity
corrections are based on Poiseuille’s formula, sudden geo-
metrical expansion, sudden geometrical constriction, and
bending. In presence of the tongue shaped constriction, the
accuracy for each set of geometrical parameters (L1, h2)
expressed as a mean error for all predicted quantities and all
imposed upstream pressures yields< 30%. The relevance of
additional corrections (resulting in the smallest errors) varies
as function of (L1,h2). For very small (< 58%) or very large

(> 96%) constriction degrees at the tooth the most accurate
model is obtained by accounting for viscosity regardless the
value of L1. For intermediate constriction degrees, in the
interval [58 96]%, narrowing the gap between both constric-
tions, i.e., decreasing L1, causes the most accurate model to
shift from constriction to bending. Therefore, the geometri-
cal parameter L1, although not explicitly appearing as a pa-
rameter in the validated one-dimensional models, does
determine the appropriate corrective term for the applied
cost function. In addition, it is interesting to note that the
model are least accurate for tooth constriction degrees (-
60%) for which the influence of L1 on the measured pres-
sures is most significant.

Consequently, one-dimensional flow models can be
applied to describe the flow through the vocal tract when
accounting for the relevant corrections in order to compen-
sate, based on geometrical considerations, for the non realis-
tic assumption of a laminar and irrotational flow. This way
the approach of one-dimensional flow modeling, commonly
used in physical phonation models, can be extended to the
vocal tract.

Several topics for further research can be formulated.
With respect to modeling, more complex flow modeling is
motivated in order to describe the influence of the geometri-
cal parameter L1. In addition, further flow and acoustic ex-
perimental characterization needs to be assessed either
qualitatively (flow visualization) or/and quantitatively (Parti-
cle Image Velocimetry, anemometry, microphone).

APPENDIX A: VISCOSITY CORRECTION TERM

Under the assumptions of two-dimensional, steady and
parallel flow, i.e., Poiseuille flow between two parallel plates
(White, 1991), the viscid Euler equation, describing the rela-
tionship between local velocity u and driving pressure P,
reduces to

l
d2u

dy2
¼ dP

dx
: (A1)

The local velocity u(y) is then easily derived as function of
the pressure difference dP/dx and the height between the

TABLE IV. Overview of the selected models q̂ L1;L2ð Þ resulting in the overall best mean error J q̂; L1; h2ð Þ (19) whose value is plotted in Fig. 7. Models are

referred to as outlined in Table III. For completeness also the constriction degree due to h2 [mm], i.e., #2(h2)¼ 1 – h2/h0 [%], and the constriction degree of
the gap between both constrictions due to L1 [mm], i.e., #1(L1)¼ 1 – (L1 – 9)/h0 [%], are indicated as well.

Decreasing L1

#1(L1) 0 0 0 38 69 81

L1

#2(h2) h2 L1¼ none L1¼ 33 L1¼ 25 L1¼ 19 L1¼ 14 L1¼ 12 terms

Decreasing h2

0 16 Visc Visc Visc Visc Visc Visc viscosity

58 6.8 Con Ben Ben Ben Ben Ben constriction! bending

66 5.5 Con Con Con Ben Ben Ben constriction! bending

84 2.6 Con Con Con Con Con Ben constriction! bending

91 1.5 Con Ben Ben Ben Ben Ben constriction! bending

96 0.6 Visc Visc Visc Visc Visc Visc viscosity
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parallel plates h(x) so that after some calculus the mean ve-
locity U(x) follows

UðxÞ ¼ ' 1

12l
dP

dx
hðxÞ2: (A2)

Introducing volume flow rate Q¼U(x)A(x) and assuming a
rectangular area with constant width w, A(x)¼ h(x)w, leads
straightforwardly to

dP ¼ 12lQ

w

1

hðxÞ3
dx; (A3)

so that Eq. (3) follows immediately:

DP ¼ ' 12lQ

w

ðxsi

xi

1

hðxÞ3
dx: (A4)

APPENDIX B: PARAMETER ESTIMATION

The parameters ak and ak defined in Sec. IV B are esti-
mated in a least square sense from the experimentally meas-
ured P0(j) data described in Sec. IV A and geometrical
variables (h2, h1, L) as shown in Sec. III and Fig. 3. There-
fore, the criterion is defined as

Jðfak; akg1!k!nÞ ¼
1

N

XN

j¼1

P0ðjÞ ' P0;EðjÞ
** **2;

with N the number of measured upstream pressures P0(j) for
fixed volume flow rate Q. Parameters estimation is thus
obtained by

fâk; âkgk ¼ arg min
fak ;akgk

J fak;akg1!k!n

& '
: (B1)

The steepest gradient method (Avriel, 2003) is applied to
solve the optimization problem resulting in the sought pa-
rameter estimation âk; âkf g1!k!n¼ f P0 jð Þ; zk jð Þ½ )1!j!N .
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