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Physical and mathematical phonation models commonly rely on a quasi-one-dimensional flow

model. The assumption of quasi-one-dimensional flow through a glottis with fixed length is

analyzed for different cross-section shapes: Circle, rectangle, ellipse, and circular segment. A

simplified flow model is formulated which accounts for kinetic losses, viscosity, and cross-section

shape. It is seen that the cross-section shape cannot be neglected since it alters boundary layer

development and hence the viscous contribution to the pressure drop across the glottis. The com-

monly applied quasi-one-dimensional flow model is shown to be inaccurate, indicating the potential

benefit of taking into account the cross-section shape. VC 2013 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4813397]
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I. INTRODUCTION

Theoretical flow models are widespread in physical pho-

nation modeling since it allows one to express key phonation

parameters, such as the phonation pressure threshold or os-

cillation frequency, as functions of a limited number of

physiologically meaningful parameters.1,2

Applied theoretical flow models rely on a non-

dimensional analysis of the governing Navier-Stokes equations

while accounting for typical values of physiological, geometri-

cal, and flow characteristics for normal phonation by a male

adult.3 Resulting non-dimensional numbers (Mach number,

Reynolds number, Strouhal number, and mean aspect ratio)

allow one to treat the glottal flow as incompressible, laminar,

inviscid, quasi-steady, and one-dimensional. Nevertheless, ex-

perimental validation of theoretical flow models on rigid4–6

and deformable7,8 glottal replicas tends to show that viscous

effects due to boundary layer development cannot be

neglected. Therefore, the one-dimensional model approach is

extended to a quasi-one-dimensional model accounting for vis-

cous flow effects based on the assumption of a quasi-one-

dimensional flow in a rectangular glottal area with fixed

length.5,7 Even so, viscous boundary layer development, and

hence the viscous contribution to the pressure drop across the

glottis, is expected to depend on the shape of the glottal area.9

Visualization of the auto-oscillation of deformable glottal rep-

licas supports the deflection from a rectangular area during ex-

perimental validation.10 Consequently, the assumption of a

rectangular glottal area can be questioned for normal as well as

pathological geometrical conditions.

The current paper analyzes the influence of the glottal

area shape on the pressure distribution within the glottis.

Analytical solutions are favored in order to allow integration

in physical or mathematical phonation models.

II. GLOTTAL CROSS-SECTION SHAPE

The glottal geometry is fully defined by the cross-section

shape and the area variation along the main flow direction A(x).

In order to allow the use of the cross-section shapes in quasi-

analytical models only shapes for which the main geometrical

parameters can be expressed analytically are assessed:9

Rectangle (re), circle (cl), ellipse (el), and circular segment

(cs). The different cross-section shapes, depicted in Fig. 1, are,

although a severe approximation, relevant to describe the glot-

tal cross-section shape in the case of normal geometrical condi-

tions during respiration or phonation.3 The cross-section is

positioned in the (y, z) plane where y denotes the anterior–pos-

terior and z the lateral direction.

III. GLOTTAL FLOW MODEL

Based on a non-dimensional analysis of the governing

Navier-Stokes equations and typical values of geometrical

and flow characteristics for normal phonation by a male adult,

the flow is assumed to be laminar [Re�O(103)], steady

FIG. 1. Different cross-section shapes in the (y, z) plane.
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(Strouhal number Sr� 1), and incompressible (squared

Mach number Ma2� 1).5 For air with density q¼ 1.2 kg/m3

and kinematic viscosity �¼ 1.5� 10�5 m2/s, the streamwise

momentum equation of the governing Navier-Stokes equa-

tions is further simplified using volume flow rate conserva-

tion, i.e., dQ/dx¼ 0, as

�Q2

A3

dA

dx
¼ � 1

q
dP

dx
þ � @2u

@y2
þ @

2u

@z2

 !
; (1)

with driving pressure gradient dP/dx, local velocity u(x, y, z),

cross-section area A(x), and volume flow rate Q. The flow

model expressed in Eq. (1) accounts for viscosity (second

right-hand term) as well as kinetic losses (source term at the

left-hand side) and depends therefore on the area as well as

the shape of the cross-section. Depending on driving pressure

and geometry, in particular minimum area Amin, viscous

boundary layer development affects the flow development so

that a three-dimensional aspect is added to the model.

Classical simplified flow models make a quasi-one-dimen-

sional flow assumption by neglecting the anterior–posterior

dimension so that the first term within parentheses of Eq. (1)

is dropped. This results in the common quasi-one-dimen-

sional flow model (BP) assuming a rectangular cross-section

with fixed glottal length lg and variable glottal width w.5,7

In addition, for dA/dx¼ 0, Eq. (1) reduces to the Poisson

equation,

�
@2u

@y2
þ @

2u

@z2

 !
¼ � 1

q
dP

dx
; (2)

describing purely viscous parallel flow through a uniform

channel with arbitrary but constant cross-section shape. For

uniform geometries and applying the no slip boundary con-

dition, u¼ 0, on the channel walls, Eq. (2) can be rewritten

as a classical Dirichlet problem which can be solved analyti-

cally for simple geometries using, e.g., separation of varia-

bles or conformal mapping. Therefore exact solutions can be

obtained for: Local velocity u(y, z), local pressure P(x), wall

shear stress s(x), and derived quantities such as volume flow

rate Q and bulk Reynolds number Re ¼ QD=�A with hy-

draulic diameter D. Analytical solutions for the volume flow

rate Q as a function of the driving pressure gradient dP/dx
and geometrical parameters a and b are given in Table I.

Neglecting viscosity, �¼ 0 as for an ideal inviscid fluid,

reduces Eq. (1) to Euler’s equation,5,9 labeled Bernoulli flow

(B),

ub
dub

dx
¼ � 1

q
dP

dx
; (3)

TABLE I. Analytical solutions Q as a function of the pressure gradient

dP=dx.

Shape Volume flow rate Q dP
dx

� �

Circle pa4

8l � dP
dx

� �
Ellipse p

4l � dP
dx

� �
a3b3

a2þb2

Rectangle(a) 4a3

3l � dP
dx

� �
b� 192a

p5

P1
n¼1;3;…

tanhðnpb=2aÞ
n5

" #

Circular segment(a) a4

4l � dP
dx

� �
tan b�b

4
� 32b4

p5

P1
n¼1;3;…

1

n2ðnþ2b=pÞ2ðn�2b=pÞ

" #

BP(b)
lgw3

12l � dP
dx

� �
(a)Infinite sum is limited to n� 60.
(b)Quasi-one-dimensional approach: Glottal width w and fixed glottal length lg.

FIG. 2. (Color online) Flow within a converging–diverging geometry with

upstream area A0 and minimum area Amin for (a) a smooth and (b) an abrupt

expansion.

FIG. 3. (Color online) Velocity distributions u(y/acl, z/acl) for A¼ 79 mm2,

dP/dx¼ 75 Pa/m, and different parameter sets {a, b}.

FIG. 4. (Color online) Normalized wall shear stress s as a function of dP/dx,

area A and cross-section shape (circular segment with b¼ 60�).
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with bulk velocity ub(x) so that volume flow rate Q¼A(x)ub(x).

Equation (3) describes one-dimensional flow accounting for ki-

netic losses due to a streamwise variation of the glottal cross-

section area as depicted in Fig. 2. The main effects of a conver-

ging–diverging area variation on the flow are important flow

acceleration in the constricted portion and the occurrence of jet

formation associated with flow separation along the divergent

portion. For an abrupt expansion characterized by a sharp trail-

ing edge, the streamwise position of flow separation xs is fixed

at the constriction end, so that xs¼ x3 as in Fig. 2(b). For a

smooth expansion, the flow separation position depends on the

channel geometry as well as on the imposed driving pressure

gradient dP/dx, so that x3< xs< x4 as in Fig. 2(a). The simplest

way to model the separation position x¼ xs is to assume that at

the separation position x¼ xs the glottal area yields A(xs)

¼ cs�Amin where the constant cs is set to cs¼ 1.2 in accord-

ance with the literature.5,7 The pressure downstream from the

flow separation position is assumed to be zero so that Pd¼ 0

holds for x� xs and the model outcome remains constant for

x� xs. Consequently, imposing the upstream pressure P0

allows the total driving pressure difference to be imposed.

IV. RESULTS

A. Uniform geometry: Cross-section shape

Figure 3 illustrates the modeled influence of the cross-

section shape and parameter values {a, b} on the velocity

distribution u(y/acl, z/acl) for a fixed area A and dP/dx for a

uniform channel following Eq. (2). The normalized mean wall

shear stress, illustrated in Fig. 4, depends on the cross-section

shape and increases as dP/dx decreases and A decreases.

Figure 5 illustrates the influence of varying the geometri-

cal shape parameters {a, b} on the simulated maximum veloc-

ity umax for a fixed cross-section area. For a rectangular and

elliptic cross-section shape, it is seen that the effect of viscos-

ity increases with the ratio a/b, where a/b¼ 1 corresponds to a

square and to a circle respectively. Increasing a=b 	� 40 does

not influence the effect of viscosity. In the case of a circular

segment, increasing the angle b of the segment decreases the

influence of viscosity at first until b ’ 85�. Further increasing

the angle enforces the influence of viscosity, so that the ratio

umax=ucl
max decreases. This general tendency reflects the varia-

tion of the hydraulic diameter as function of angle b. Two ge-

ometrical parameter sets a0 and a, summarized in Table II, are

selected from Fig. 5 for which the influence of viscosity or

boundary layer development on the flow is limited (a0) and

pronounced (a), respectively.

FIG. 5. (Color online) Influence of cross-section shape parameters on nor-

malized maximum velocity, umax=ucl
max, for fixed area and pressure gradient:

(a) Rectangle and ellipse and (b) circular segment.

TABLE II. Geometrical condition in addition to a fixed area. Note that

circle and square are special cases of the ellipse and rectangle corresponding

to a/b¼ 1.

Ellipse Rectangle Circular segment

a0 a/b¼ 1.4 a/b¼ 1.3 b¼ 60�

a a/b¼ 25 a/b¼ 32 b¼ 30�

FIG. 6. (Color online) Normalized

pressure P(x)/P0 for Amin/A0¼ 0.1 and

P0¼ 1000 Pa for ideal fluid with quasi-

one-dimensional viscous correction

(BP) and ideal flow with viscous term

function of the cross-section shape for

parameter sets a0 and a, given in Table

II, for an abrupt [(a) and (c)] and a

smooth [(b) and (d)] expansion. The

geometry is depicted in gray shade.
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B. Glottal geometry: Varying streamwise area

Figure 6 illustrates the normalized pressure distribution

P/P0 within a convergent–divergent geometry derived from

Eq. (1) for the geometrical conditions summarized in Table

II. As a reference, the quasi-one-dimensional flow model

outcome (BP) is shown as well. For the parameter set labeled

a0 [Figs. 6(a) and 6(b)] the viscous contribution to the pres-

sure drop is low regardless of the cross-section shape.

Therefore, the pressure drop within the uniform portion of the

constriction is almost constant as expected for an ideal fluid

(B) described by Eq. (3). The quasi-one-dimensional viscous

contribution (the line BP) overestimates the pressure loss

within the constricted portion by 20% or more. For the pa-

rameter set labeled a [Figs. 6(c) and 6(d)] the pressure drop

varies again from an almost constant value expected in case

of an ideal fluid (circular segment) to well above (�10%) the

quasi-one-dimensional viscous contribution (the line BP), as,

e.g., observed for a rectangular or elliptic cross-section.

Figure 7 quantifies the normalized pressure at x¼ x2,

corresponding to the onset of the minimum area, and at

x¼ xm corresponding to the position of minimum pressure

within the constriction. In the case of an abrupt expansion

the minimum pressure equals zero regardless of the cross-

section shape, whereas variations in the cross-section shape

increases the pressure at x¼ x2 by up to �60%. In the case

of a smooth expansion the impact of the cross-section shape

is more pronounced. At x¼ xm, the minimum pressure P/P0

is negative and varying the cross-section shape induces a

variation by as much as �40%. At the onset of the constric-

tion x¼ x2 the influence is even larger since the pressure var-

iation increases to 100%. As for an abrupt expansion, the

quasi-one-dimensional model accounting for viscosity (BP)

results in a significant underestimation or overestimation of

the pressure at x¼ x2 (�15%) as well as at x¼ xm (�25%)

depending on the cross-section shape.

V. CONCLUSION

Classical phonation models apply a quasi-one-dimen-

sional flow model accounting for kinetic losses and fluid vis-

cosity, where the viscous flow effects are derived assuming

quasi-one-dimensional flow through a glottis with fixed length.

In the current paper, it is proposed to improve the flow model

by no longer making the assumption of quasi-one-dimensional

flow. Instead the cross-section shape is taken into account

resulting in analytical flow solutions for which the viscous part

depends on the cross-section shape. The pressure distribution

within the glottal constriction is seen to vary from 20% up to

100% compared to the quasi-one-dimensional flow solution.

Since this is of the same order of magnitude as well-studied

flow events such as the position of flow separation, the current

study suggests that applying the proposed analytical flow

model improves the performance of simplified physical or

mathematical models of phonation. Experimental studies need

to be performed in order to validate the current findings for

steady and unsteady flow.
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